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% and thickens towards Pasadena. The detailed nature of the transition zone at the base of the
crust controls the early arriving shorter periods (strong motions), while the edge of the basin
controls the scattered longer-period surface waves. From the waveform characteristics
alone, one can easily distinguish shallow events in the basin from deep events as well as the
amount of strike-slip versus dip-slip motions. Those events rupturing the sediments, such as
the 1979 Imperial Valley earthquake, can be recognized easily by a late arriving scattered Love

 wavé been delayed by the very siow path across the shallow valley structure.

mﬂb effect of transition regions between continental and oceanic structure on
the propagation of [’5 waves from continental sources is examined. In particular, the
attenuation due to variations in layer thickness in such transition regions is caiculated and
explained for a suite of simple models. The measured attenuation, due to the geometry of the
transition regions between the oceaniq) and continental structures within a partially oceanic
path with source and receiver in a céntinental structure, is at most a factor of four for
frequencies from 0.01 to | Hz. This is inadequate to explain the observed extinction of Lg along
such paths. This extinction has previously been attributed to the effects of the transition
region geometry. The method used to calculate the results presented in this study is developed
and its validity and accuracy aré demonstrated. Propagator matrix seismograms are coupled
into a Finite Element calculation to produce hybrid teleseismic SH mode sum seismograms.
These hybrid synthetics can Be determined for paths including any regional transition zone or
other heterogeneity that exjsts as part of a longer, mostly plane-layered, path. Numerical
results presented for a suite of transition models show distinct trends in each of the regions
through which the wavefield passes. The wavefield passes through a continent-ocean transition
regions, then a region of oceanic structure, and finally through an ocean-continent transition
region. When an Lg wavefront passes through a continent-ocean transition, the amplitude and
coda duration of the Lg wave at the surface both increase. At the same time, much of the
modal Lg energy previously trapped in the continental crust is able to escape form the fower
crust into the subcrustal layers as body waves. The magnitude of both these effects increases
as the length of the fransition region increases. When the wavefront passes through the region
of oceanic structurg further energy escapes from the crustal layer, and produces a decrease in
Lg amplitude at the surface. The rate of amplitude decrease is maximum near the transition
region and decreases with distance from it. When the wavefield passes through the ocean-
continent transition region a rapid decrease in the Lg amplitude at the surface of the crust
results. The energy previously trapped in the oceanic crustal layer spreads throughout the
thickening crustd! layer. Some of the body wave phases produced when the wavefield passes
through the continent-ocean transition region are incident on the continental crust in the ocean-
continent transition region. These waves are predominantly transmitted back into the crust.
The other body wave phases reach depths below the depth of the base of the continental crust
before reaching the ocean-continent transition and, thus, escape from the system.

In section 37 %\othods for representation theorem coupling of finite-element or finite
difference calculatiofis and propagator matrix method calculations are developed. The validity
and accuracy of the resulting hybrid method are demonstrated. The resulting hybrid technique
can be used to study the propagation of any phase that can be represented in terms of an SH
mode sum seismogram, across regional transition zones or other heterogeneities. These
heterogeneities may exist in regions which form subsegments of a longer, mostly\ plane-
layered, path. Examples of structures of interest through which such waves can propagated
using these techniques include, regions of crustal thickening or thinning such as coptinent-ocean
transitions or basins, anomalous bodies of any shape located In the path, and sudddn transitions
from one layered structure to another. Examples of the types of phase that may be propagated
through these structures include Love waves, Lg. Sp, and S,.
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In section 4, we present techniques for modeling explosions realistically using two-
dimensional methods in three-dimensional earth models. Although seismic structures are
generally three-dimensional(3-D), numerical simulation of wave propagation through laterally
heterogeneous media is conceptually simpler and less computationally intensive in two
dimensions(2-D). Source expressions for 2-D that have the same radiation patterns as their 3-
D counterparts have been derived which can also correct for the differences between 2-D and
3-D wave propagation (Vidale and Helmberger, 1986; Stead and Helmberger, 1988; Helmberger
and Vidale, 1988). Because that technique approximately transforms waves from a cartesian
2-D grid to a cylindrically symmetric 3-D world, slightly anisotropic geometrical spreading in
2-D better approximates isotropic spreading in 3-D than simple isotropic spreading in 2-D does.
This paper describes a correction to the explosive source expression which reduces energy
. traveling vertically out of the source region, but leaves unchanged the energy traveling
laterally out of the source region. We show that this correction will significantly improve the
results of using a 2-D grid to simulate elastic wave propagation from an explosive point source.

The effect of shallow station structure and lateral velocity variation are investigated for
records of the Amchitka blasts MILROW and CANNIKIN. The differences between the Meuller-
Murphy, Helmberger-Hadley, and von Seggern-Blandford reduced displacement potential (RDP)
source representations are smaller than the differences produced by various possible velocity
structures. Using a model based on known structure, a better fit is obtained for the records of
MILROW, primarily for the surface waves. In addition, a technique is developed to include
possible source asphericity. Using this technique, the Amchitka blasts, especially CANNIKIN,
show evidence of significant aspherical cavity formation.

In section 5, we presaent expressions and synthetics for Rayleigh and Love waves
generated by various tectonic release models are presented. The multipole formulas are given
in terms of the strengths and time functions of the source potentials. This form of the Rayleigh
and Love wave expressions is convenient for separating the contribution to the Rayleigh wave
duse to the compressional and shear wave source radiation and the contribution of the upgoing
and downgoing source radiation for both Rayleigh and Love waves. Because of the ease of using
different compression and shear wave source time functions, these formula are especially
suited for sources for which second and higher degree moment tensors are needed to describe
the source, such as the initial value cavity release problem.

A frequently used model of tectonic release is a double couple superimposed on an
explosion. One of the purposes of this research is to compare synthetics of this and more
realistic models in order to determine for what dimensions of the release model this assumption
is valid and whether the Rayleigh wave is most sensitive to the compressional or shear wave
source history. The pure shear cavity release mode! is a double couple with separate P-wave
and S-wave source histories. The time scales are proportional to the source regior's dimension
and differ by their respective body wave velocities. Thus, a convenient way to mcdel the
effect of differing shot point velocities and source dimensions is to run a suite o! double couple
time history calculations for the P-wave and S-wave sources separately and .nen summing the
different combinations.

One of the more interesting results from this analysis is that the well known effect of
vanishing Rayleigh wave amplitude as a vertical or horizontal dip-slip double couple model
approaches the free surface is due to the destructive interference between the P-wave and SV-
wave generated Rayleigh waves. The individual Rayleigh wave anplitudes, unlike the SH-

4 generated Love waves, are comparable in size to those from otier double couple orientations.
This has important implications to the modeling of Rayleigh waves from shallow dip-slip fault
models. Also, the P-wave radiation from double couple sources is a more efficient generator of
Rayleigh waves than the associated SV wave or the P-wave from explosions. The latter is
probably due to the vertical radiation pattern or amrlitude variation over the wave front. This
effect should be similar to that of wave front curvature.
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Summary

The research performed under the contract, during the period 17 March 1987
through 31 May 1989, can be divided into three main topics; modeling regional SH
waves tha: propagate across lateral variations in structure, modeling explosions using
2-D numerical methods, and the effect of differing P and SV source time histories on the
generation of Rayleigh and Love waves.

In section I, intermediate-period seismograms recorded at Pasadena of earthquakes
occurring along a profile to Imperial Valley are studied in terms of source phenomena
versus path effects. Some of the events have known source parameters, determined by
teleseismic or near-field studies, and are used as master events in a forward modeling
exercise to derive the Green's functions (displacements at Pasadena due to a pure strike-
slip or dip-slip mechanism) that describe the propagation effects along the profile.

Both timing and waveforms of records are matched by synthetics calculated from two-
dimensional velocity models. The best two-dimensiona! section begins at Imperial Valley
with a thin crust containing the basin structure and thickens towards Pasadena. The
detailed nature of the transition zone at the base of the crust controls the early arriving
shorter periods (strong motions), while the edge of the basin controls the scattered
longer-period surface waves. From the waveform characteristics alone, one can easily
distinguish shallow events in the basin from deep events as well as the amount of strike-
slip versus dip-slip motions. Those events rupturing the sediments, such as the 1979
Imperial Valley earthquake, can be recognized easily by a late arriving scattered Love
wave which has been delayed by the very slow path across the shallow valley structure.

In section 2°, the effect of transition regions between continental and oceanic
structure on the propagation of Lg waves from continental sources is examined. In
particular, the attenuation due to variations in layer thickness in such transition
regions is caiculated and explained for a suite of simple models. The measured
attenuation, due to the geometry of the transition regions between the oceanic and
continental structures within a partially oceanic path with source and receiver in a
continental structure, is at most a factor of four for frequencies from 0.01 to | Hz. This
is inadequate to explain the observed extinction of Lg along such paths. This extinction
has previously been attributed to the effects of the transition region geometry. The
method used to calculate the results presented in this study is developed and its validity
and accuracy are demonstrated. Propagator matrix seismograms are coupled into a

Vi
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Finite Element calculation to produce hybrid teleseismic SH mode sum seismograms.
These hybrid synthetics can be determined for paths including any regional transition
zone or other heterogeneity that exists as part of a longer, mostly plane-layered, path.
Numerical resuits presented for a suite of transition models show distinct trends in each
of the regions through which the wavefield passes. The wavefield passes through a
continent-ocean transition regions, then a region of oceanic structure, and finally
through an ocean-continent transition region. When an Lg wavefront passes through a
continent-ocean transition, the amplitude and coda duration of the Lg wave at the

- surface both increase. At the same time, much of the modal Ly energy previously
trapped in the continental crust is able to escape form the lower crust into the
subcrustal layers as body waves. The magnitude of both these effects increases as the

length of the transition region increases. When the wavefront passes through the region
of oceanic structure further energy escapes from the crustal layer, and produces a
decrease in Lg amplitude at the surface. The rate of amplitude decrease is maximum near
the transition region and decreases with distance from it. When the wavefield passes
through the ocean-continent transition region a rapid decrease in the Ly amplitude at the
surface of the crust results. The energy previously trapped in the oceanic crustal layer
spreads throughout the thickening crustal layer. Some of the body wave phases produced
when the wavefield passes through the continent-ocean transition region are incident on
the continental crust in the ocean-continent transition region. These waves are
predominantly transmitted back into the crust. The other body wave phases reach depths
below the depth of the base of the continental crust before reaching the ocean-continent
transition and, thus, escape from the system.

In section 3, methods for representation theorem coupling of finite-element or
finite difference calculations and propagator matrix method calculations are developed.
The validity and accuracy of the resuiting hybrid method are demonstrated. The
resulting hybrid technique can be used to study the propagation of any phase that can be
represented in terms of an SH mode sum seismogram, across regional transition zones or

. other heterogeneities. These heterogeneities may exist in regions which form
subsegments of a longer, mostly plane-layered, path. Examples of structures of interest
. through which such waves can be propagated using these techniques include, regions of

crustal thickening or thinning such as continent-ocean transitions or basins, anomalous
bodies of any shape located in the path, and sudden transitions from one layered
structure to another. Examples of the types of phase that may be propagated through
these structures include Love waves, Lg, Snh. and S,.
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. In section 4, we present techniques for modeling explosions realistically using two-
dimensional methods in three-dimensional earth models. Although seismic structures
are generally three-dimensional(3-D), numerical simulation of wave propagation
through laterally heterogeneous media is conceptually simpler and less computationally
intensive in two dimensions(2-D). Source expressions for 2-D that have the same
radiation patterns as their 3-D counterparts have been derived which can also correct
for the differences between 2-D and 3-D wave propagation (Vidale and Helmberger,
1986; Stead and Helmberger, 1988; Helmberger and Vidale, 1988). Because that
technique approximately transforms waves from a cartesian 2-D grid to a cylindrically
symmetric 3-D world, slightly anisotropic geometrical spreading in 2-D better
approximates isotropic spreading in 3-D than simple isotropic spreading in 2-D does.
This paper describes a correction to the explosive source expression which reduces
energy traveling vertically out of the source region, but leaves unchanged the energy
traveling laterally out of the source region. We show that this correction will
significantly improve the results of using a 2-D grid to simulate elastic wave
propagation from an explosive point source.

The effect of shallow station structure and lateral velocity variation are investigated
for records of the Amchitka blasts MILROW and CANNIKIN. The differences between the
Meuller-Murphy, Heimberger-Hadley, and von Seggern-Blandford reduced
displacement potential (RDP) source representations are smaller than the differences
produced by various possible velocity structures. Using a model based on known
structure, a better fit is obtained for the records of MILROW, primarily for the surface
waves. In addition, a technique is developed to include possible source asphericity.
Using this technique, the Amchitka blasts, especially CANNIKIN, show evidence of
significant aspherical cavity formation.

in section 5., we present expressions and synthetics for Rayleigh and Love waves
generated by various tectonic release models are presented. The multipole formulas are
given in terms of the strengths and time functions of the source potentials. This form of
the Rayleigh and Love wave expressions is convenient for separating the contribution to
the Rayleigh wave due to the compressional and shear wave source radiation and the
contribution of the upgoing and downgoing source radiation for both Rayleigh and Love
waves. Because of the ease of using different compression and shear wave source time
functions, these formula are especially suited for sources for which second and higher
degree moment tensors are needed to describe the source, such as the initial value cavity
release problem.

vin




A frequently used model of tectonic release is a double couple superimposed on an
explosion. One of the purposes of this research is to compare synthetics of this and more
realistic models in order to determine for what dimensions of the release model this
assumption is valid and whether the Rayleigh wave is most sensitive 10 the
compressional or shear wave source history. The pure shear cavity release model is a
double couple with separate P-wave and S-wave source histories. The time scales are
proportional to the source region's dimension and differ by their respective body wave
velocities. Thus, a convenient way to model the effect of differing shot point velocities
and source dimensions is o run a suite of double couple time history calculations for the
P-wave and S-wave sources separately and then summing the different combinations.

One of the more interesting resuits from this analysis is that the well known effect
of vanishing Rayleigh wave amplitude as a vertical or horizontal dip-slip double couple
model approaches the free -urface is due to the destructive interference between the P-
wave and SV-wave generated Rayleigh waves. The individual Rayleigh wave amplitudes,
unlike the SH-generated Love waves, are comparable in size to those from other double
couple orientations. This has important implications to the modeling of Rayleigh waves
from shallow dip-slip fault models. Also, the P-wave radiation from double couple
sources is a more efficient generator of Rayleigh waves than the associated SV wave or
the P-wave from explosions. The latter is probably due to the vertical radiation pattern
or amplitude variation over the wave front. This effect should be similar to that of wave
front curvature.
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SECTION 1

MODELING REGIONAL LOVE WAVES: IMPERIAL VALLEY TO
PASADENA
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MODELING REGIONAL LOVE WAVES: IMPERIAL VALLEY TO
PASADENA

By PHYLLIS HO-Liu AND DONALD V. HELMBERGER

ABSTRACT

intermediate-period seismograms recorded at Pasadena of earthquakes oc-
curring along a profile to imperial Valiey are studied in terms of source phenomena
versus path effects. Some of the events have known source parameters, deter-
mined by teleseismic or near-fisld studies, and are used as master svents in &
forward modeling exercise to derive the Green's functions (displacements at
Pasadena due to a pure strike-siip or dip-siip mechanism) that describe the
propagation effects along the profile. Both timing and waveforms of records are
matched by synthetics caiculsted from two-dimensional velocity models. The
best two-dimensional section begins at imperial Valiey with a thin crust containing
the basin structure snd thickens towards Pasadena. The detailed nature of the
transition zone st the base of the crust controls the earty arriving shorter periods
(strong motions), while the edge of the basin controls the scattered longer-period
surface waves. From the wavetform characteristics alone, one can easily distin-
guish shaliow events in the basin from deep events as well as the amount of
strike-slip versus dip-slip motions. Those events rupturing the sediments, such
as the 1979 imperial Valley esrthquake, can be recognized easily by a late
arriving scattered Love wave which has been delayed by the very slow path
across the shaliow valley structure.

INTRODUCTION

Recent broadband (BB) observations of regional phases at Pasadena, IPAS
suggest that these seismic motions are strongly influenced by path effects (Fig. 1)
The top two traces contain the BB displacements produced by two San Migue
events rotated into tangenital and radial directions. The event on the bottom is
roughly 50 times larger than the upper foreshock. The next few sets of traces display
simulations of what these motions would produce on conventional instruments
operated by the Seismological Laboratory at various times. The long-period Wood:
Anderson (wa.lp), operated during the 40’s and 50’s, produced the primary data set
used in the stress-drop study by Thatcher and Hanks (1973).

The similarity of these two events across the various frequency-bands is a rather
common occurrence (Bent et al, 1989) and emphasizes the role of propagation in
regional phases. If we knew the mechanism of the smaller foreshock, we probably
could make some good estimates of the faulting parameters of the main events by
using the well-known empirical Green's function approach (Hartzell, 1978). This
approach has proven very useful in strong-motion simulations of main events from
their aftershocks by assuming that the aftershock and the main event have the
same mechanisms. The strength of this procedure lies in eliminating the path effects
by assuming they are included in the small event record automatically. The main
problem in applying this method regionally is that it is difficult to find an aftershock
or foreshock with the same orientation as the main event at the appropriate depth
and range.

Generally we do not know the mechanisms of many of these moderate aftershocks
because they are too large for local arrays and too small for global networks. In
addition, waveforms of different aftershocks are often so different, even if they are

2




MODELING REGIONAL LOVE WAVES

Tongential Radial Verticol
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FiG. 1. The upper trace of each pair is a small foreshock, M = 3.2. The lower trace is a M = 5.3
fomhock at a similar location. Com rarmg the amplitudes one can see that the larger event is richer in
longer periods as expected. The wa. ulation cosresponds to instruments operated in the 40's and

spatially close to each other, that it is not easy to determine which aftershock can
be used as an empirica) Green's function to simulate the main event. Examples of
this category of events are the series of aftershocks of the 1979 Imperial Valley
earthquakes recorded on the Press-Ewing (30-90) of Pasadena (Fig. 2). We would
like to call attention to the three aftershocks labeled A, B, and C, where motions
for all three events are about the same size on the vertical (UP) component but
distinctly different on the horizontals (EW and NS). Differences in waveforms are
also apparent on all three components. Since the paths from the Imperial Valley to
Pasadena are essentially the same for the three events, we would conclude that the
source characteristics (depths and faulting parameters such as strike, dip, and rake)
must be different. As we will discuss shortly, event A is probably a mid-depth
normal dip-slip event, whereas event B is a shallow normal dip-slip event. Event C
is a deep strike-slip event.

In order to study these seismograms in detail, we digitized and rotated the NS
and EW components to obtain the tangenital (SH waves) and vertical-radial (P-
SV waves) components. At these periods the motion appears to be well behaved, in
that the P waves are not apparent on the tangenital component. Particle motion
studies of the type discussed by Vidale (1986) conducted on these recordings indicate
that the first 10 sec of record is consistent with P waves and diffracted SV waves
followed by Rayleigh motion. Similar analysis of filtered rotated torsion records
indicates that separation of the P-SV and SH system occurs down to periods of
about 1 sec (Fig. 3). Thus, it appears that two-dimensional models may prove
effective in removing the propagational distortions so that source retrieval is

possible.
3
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FiG. 2. Three.components seismograms of the aftershock sequence recorded on the long-period Press-
Ewing 30-90 instrument st Pasadena. Note the difference in waveforms and relative amplitudes of the
three boxed aftershocks A, B, and C between components. The event locations are given in Table 1.

Tangentiol Radial Verticol
.25x107%em 18x10" em A2x107%cm
SyuS
Ml —ss s
79 76 .

. \W 39 w’wm vo.so
4.0 l 2.6 2.4 Hﬂ A ’ woulo

1.3 75 63
-——~————W‘Aw~ 1-90

2.5 ‘| .7 .3
s

—
30 sec

Fic. 8. Recording of 8 M, = 4.9 aftershock of the Supersition Hills earthquake of 24 November 1987
along with the various simulations. This event occurred near the southern end of the fault breakage.
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MODELING REGIONAL LOVE WAVES s ®

In this study, we well derive a 2-D model appropriate for a cross section from
Imperial Valley to Pasadena using a master event and the forward modeling
approach. The resulting Green's functions will then be used to examine some of the
more important events located in the map displayed in Figure 4. Events occurring
to the northwest of the Imperial Valley are relatively simple, while events in the
basin are always complex, especially the shalics ones. Considering the obvious 3-D
geometry indicated in Figure 4, it is rather surprising that these records do not
show more evidence of multi-pathing and Love-Rayleigh mixing. This subject will
be addressed later. We consider primarily the long-period tangenital motions in this
pilot study because less computational effort is involved compared to modeling the
P-SV system recorded on the radial and vertical components.

CRUSTAL CROSS SECTION AND GREEN'S FUNCTIONS

Searching for suitable Green’s functions by trial-and-error testing can be a time-
consuming endeavor but the basic approach has proven effective in previous studies
(Vidale et al, 1985; Helmberger and Vidale, 1987). Two types of codes were
employed, namely the generalized ray method (GRT) for laterally varying layers
(Helmberger et al., 1985) and a modified finite-difference (FD) technique (Vidale et
al., 1985). The first method is analytical and can be used effectively to adjust deeper
smoothly varying structures for proper timing and critical angle positions. The
truncation of basins, however, requires the more powerful numerical approach.

As in all forward modeling attempts, one starts with the best geophysical data
available for constraining the initial model. Fortunately, considerable studies have
been conducted in this region. For the Imperial Valley velocity profile, we used the
model proposed by McMechan and Mooney (1980) and Fuis et al (1982). Just
outside the basin we used the results from Hamilton (1970), who investigated the
Borrego Mountain aftershocks with controlled calibration shots. Hamilton's results
suggest a thick crust-mantle transition zone. At Pasadena we adopted the model

EVENT LOCATIONS

34°

L

33° -
f 50 km'

% Mejsr Evern
O Mester Events
o Smell Events

-118° -u7e -116°
F1G. 4. Map showing locations of Pasadena, PAS, and events used in this study.

5




PHYLLIS HO-LIU AND DONALD V. HELMBERGER

proposed by Hadley and Kanamori (1977, 1979) with a thick crust and relatively
sharp Moho transition. These vertical profiles were assembled by allowing for a
gentle dipping connecting structure and produced an initial cross-section from
Imperial Valley to Pasadena.

An example calculation for a deep event near Anza is given in Figure 5, which
shows the simplicity of the propagational path to Pasadena for hard-rock sections.
All six events north of Borrego look similar to the upper plot (Fig. 6) and can be
explained by a multitude of of models. However, note the complexity of the bottom
trace in Figure 5, A = 85 km (synthetic), appropriate for a basin site. Features
produced by this geometry are discussed at length by Vidale et al. (1985). Thus, the
biggest difficulty is modeling the edge of the basin properly to explain the PAS
records of the basin events.

Synthetic for a basin event are displayed in Figure 7 along with the master event
(Brawley) observations, A = 256 km. The source parameters for this event were
determined earlier by Heaton and Helmberger (1978) and are treated as known.

Imperia! Valley Anzo PAS
(] L L

S-P Wood Anderson L-P 30-90
torsion synthetics synthetics

PAS
| 2.4 ¥ 1.5
+ 165 ~

3.1 2

2

Anzo

T

4.2 .2

60sec

F1G. 5. Profile of Green's functions with the source outside the basin, small solid box beneath Anza.
Little waveform distortion is observed along the path towards Pasadena (upper four traces) while very
complicated waveforms develop rapidly in basin (lower two traces), indicating the important effect
of the basin edge on wave propagation along this profile.
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ANZA EVENTS, AND AFTERSHOCKS
OF 1968 BORREGO AND 1969 COYOTE MTN. 79/02/12

EARTHQUAKES
wor3xi0® F 8 5 am

@ N
AN

78/06/05 R 69/05/19

/;.
Moea2x 02?2 W 1aem 0 "s0am

T6/08/11

Mo +9 1x10%
dyne -cm

A

022

68/04/29
0831

Mo «8 4 x102?

68/04/29
(0801)

23
8 km My =2.6 %10
60 sec

F1G. 6. Long-period modeling of three Anza events and two aftershocks of the 1968 Borrego Mountain
'ezent and one of the 1969 Coyote Mountain aftershocks. The corresponding focal mechanism is also
own.

This assumption allows us to perturb the various model parameters to improve
agreement in waveform and absolute timing. Goodness-of-fit is determined simply
by overlaying the synthetic and observed waveforms. This procedure goes relatively
fast for long-period modeling but becomes increasingly tedious at higher frequencies.

The best-fitting model to date has a slow mantle velocity of 4.28 km/sec, a
northwest-thinning Moho-crustal transition layer of 4.18 km/sec, a dipping crustal.
Moho transition layer of 4.05 km/sec, a dipping lower crust of 3.78 km/sec that
thins out to the northwest, and an upper crust of 3.38 km/sec that also dips
northwest. The idealized Imperial Valley basin surface has two layers of very slow
shear velocities of 1.0 km/sec and 2.34 km/sec, corresponding to what Fuis et al.
(1982) described in their P-wave refraction profiles. A thin layer of 3.24 km/sec
that thins out at the edge of the basin lies underneath the slow sediments. This
model is displayed at the top of Figure 8 with strike-slip and dip-slip synthetics
given below. Note the rapid development of dispersion and waveform complexity
caused by the slow Valley structure which is evident at A = 62 km. Not much more
complexity develops along the remaining hard-rock path suggesting the applicability
of numerical-analytical interfacing codes (Stead and Helmberger, 1988).

Depth sensitivity is displayed in Figure 9 at the range of 262 km, which is
appropriate for the Imperial Valley aftershocks. For both strike-slip and dip-slip
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11/4/76 11/4/76 Aftershock

Synthetic
| PN
60 sec
Iv Anzo PAS
‘ T ]
836 B=4.8 B=3T8 B* 338
p*265 ,s32 pt 2.7 pt2.6
) f 0 km

| ¥
A+ 1.0  p=23 8=3.18
'p'IA p=2.3 p2.9

ho. ‘l.mmlmtdtbcbm unhwnkomdiumnbockumordedonwso

90 of lg The mechanism used to generate the

synthetic is obtained from Heaton and Helmberger (1

mechanisms, abeolute amplitude decreases with depth for & given moment. In
addition, a pure strike-slip mechanism results in almost twice the amplitude of a
pure dip-slip mechanism at all four depths. In general, we also expect to see a
shallow source excite more surface waves for both mechanisms, and deeper source
to show less complexity. Thuemulumumhrtothooetoundmﬂathyered
models.

For small events, we expect source durations to be short compared to the 30-90
instrumental response and, therefore, we should be able to fit any seismogram by a
linear combination of the Green's functions displayed in Figure 9. A total of nine
events with unknown source parameters, including the three aftershocks described
earlier and the Brawley aftershock, were collected as & data set to which the Green’s
functions were applied. These events are listed in Table 1, where the locations and
depths are from the Caltach catalog. After reviewing focal mechanisms for published
mechanisms for events in this region (Johnson and Hadley, 1876; Heaton and
Helmberger, 1978; Fuis et al, 1882; Johnson and Hutton, 1982; Liu and Helmberger,

e ——




PHYLLIS HO-LIU AND DONALD V. HELMBERGER

VARIATIONS OF GREEN'S FUNCTIONS
WITH DEPTH

Dip Slip Strike Slip

km 53 10.8
35

60 sec

F1G. 9. Sensitivity of Green’s functions to depth. Sources are put in four different depths at the same
epicentral location as the 1976 Brawley event: 3.5, 7.0, 10.5, and 14.0 km. In general, when the source is
still in the basin, more surface waves are generated and when the source is below the soft and slow
sediments in the basin, the waveforms are simpler and energy drops off rapidly with time.

TABLE 1
SuMMARY OF EARTHQUAKES USED IN THE IMPERIAL VALLEY LONG-PERIOD STUDY
Date -
Brent (mm/dd/yy) Time (GMT) Latitude (N)  Longitude (W)  Depth (km) Dip Rake  Strike

1(A) 10-16-79 03:39:35.04 32° 58.92° 115" 33.01' 5.14 10° 90° 99°
2(B) 10-16-79 09:36:41.88 382°56.98° 115° 31.41' 4.27 10° 90°  99°
3(C) 10-16-79 11:47:56.06 32°54.81° 115° 3361’ 5.09 80° 180 119°
4 11-4-76 14:12:50.28  33° 07.41° 115° 37.19° 2.7 80°  180° 328°
5 11-4-76  '10:41:37.54 33° 0789’ 115° 37.40° 0.55 90°  180° 328°
6 10-16-79  23:16:32.18  33° 01.33°  115° 30.37° 3.32 20° 180° 800°
7 10-17-79  22:45:33.82 33° 0240' 115° 30.02° 1.87 70° 180° 334°
8 10-16-79  03:10:47.83 32° 57.05° 115° 32.10' 4.22 70° 180° 334°
9 10-16-79  06:49:10.97 32°56.48° 115° 32.31' 4.66 10° 80"  989°
10 4-25-81 07:03:14.12 83°06.24° 115° 87.69' 8.24 45  -90° 0°

® Brawley Earthquake.

simple for both strike-slip and dip-slip mechanisms, and it changes only slightly
with depth. It appears that the deeper the event, the simpler the waveform it
created. This features proves useful in fixing the depths of events as did the amount
of surface wave excitation for events in the Imperial Valley.

In order to check the derived crustal model for its accuracy outside the Imperial
Valley sedimentary basin, we applied the same source-modeling process to three
events at Anza, an aftershock of the Coyote Mountain 1969 event, and two
aftershocks of the 1968 Borrego Mountain event (Fig. 6). The mechanisms used to
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VARIATIONS OF GREEN'S FUNCTIONS
WITH DISTANCE

33.8

i
b

Dip Stip oo | Strike Slip

(Mg = 1023 gyne-cm)

F1G. 8. Preferred velocity model -ndthamcmn'o functions generated with a source
depth of 7 km at the location of the 1976 Brawley e (A = 262 km). The stations are located at
50 km interval with the last station st Pasadens. Note the rapid development of surface waves in the
basin portion of the path. Mazimum amplitudes are given in mm x 10,

1985), a total of 21 possible orientations for each event was considered. The best-
fitting combinations are displayed in Figure 10 with depths, magnitudes, and
moment estimates given in Tables 1 and 2. Note that event C, as discussed earlier,
is modeled as a deep strike-slip event, while event B appears to be a shallow dip-

The moment required to match the Brawley data was 3.0 X 10® dyne-cm, which
can be compared with the 3.2 found by Heaton and Helmberger (1878) using local
strong-motion data.

The sensitivity of Green’s functions to depth for sources at Anza appears totally
different from that in Imperial Valley (Fig. 11). In general, the waveform is very
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W 10 ol
[” 4105 am o 8
d* Tam
LONG PERIOD MOOELING

. ‘mr:mu VALLEY EVENTS
W ~ Srowiey Eq.
10.56m g
\‘ “‘--\&N Tam
ﬂ \ Miorshoct & h
A ﬂ n 10.3km e
Aftershock C 3

A

Tam

3Sam

Fi16. 10. Long-period modeling of nine unknown aftershocks and small events in the Imperial Valley,
including the calibration event, the anle&:aﬂhquake. Data shown are recorded on the LP =~ 30-90
instrument. The modeled mechanisms are shown. Results indicate that event C is a deep strike-slip
event, event B a shallow dip-slip event, and event A a mid-depth dip-slip event.

TABLE 2
IMPERIAL VALLEY MOMENTS OBTAINED BY FITTING LONG-
PERIOD SH AND THE CORRESPONDING M, AND DEPTHS
COMPARED TO THE CATALOG VALUE

M, Depth (km)
Bvent M,

SH eatalog Modaled estalog
1 15.3 4.5 4.6 10.5 b.14
2 24 3.3 4.1 35 427
3 39.2 4.6 48 14.0 5.09
4 63 4.5 44 70 2.1
5 80.0 48 5.1 70 0.55
8 60.0 5.2 5.0 7.0 332
1 4.1 44 4.7 10 187
8 62.1 4.7 4.8 105 4.22
9 9.38 48 5.1 10 4.66

10 6.1 45 3.9 105 8.24
M, are given in 10* dyne-em.

model the Anza events were again collected from various studies (Given, 1983;
Sanders and Kanamori, 1084) and adjustments made to fit the data. The fits
between synthetics and data are reasonsbly good with results given in Tables 3
and 4.
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VARIATIONS OF GREEN'S FUNCTIONS
WITH DEPTH

Dip Slip Strike Slip

mm. I ne
70 —A’Jy—_l ®
5 M ¥

60 sec

6.5

5.5

3.4

< 7 T T

F1G. 11. Sensitivity of Gmn s functions to with the source at Anza distance. The waveforms
are simple compared to duplayod in Flcuu . There is not as much difference in the complications
of waveforms with depth as in the previous case.

TABLE 3

SUMMARY OF SOURCE MECHANISMS FIT TO THREE AN2ZA EVENTS IN THE LocAL MAGNITUDE
RANGE OF 4 TO §

Event

mbbhh&rih

Dete Time Latioade (N} Longitude (W) )

(mm/dd/yy) (GMT)
08-11-76 15:24:55.42 33° 28.9° 116° 80.62’ 14.0 70° ~86* 45°
08-05-78 16:03:03.72 33° 25.21° 116° 41.6)’ 140 70° -80° 152°
02-12-79 04:48:42.26 33° 27.21° 116° 25.44° 6.0 81° 0° 145°

Strike is measured clockwise from North.

TABLE ¢

SuMMARY OF SOURCE MECHANISMS FIT TO APTERSHOCKS OF
THE 1068 BORREGO MOUNTAIN AND 1969 COYOTE MOUNTAIN
EARTHQUAKES

Bvernt

Dete D Rabe Buibe

iayy) Hma  Sec  Latide (N)  Longituds (W)
04-00-68 0800 385 33°064° 116°004° 45° 80° 0
04-00-68 1831 385 33°189° 116°183° 80° 251° 163°
05-19-80 1440 330 33°209° 116°11.3° 80° 281° 163"

© Serike is measured clockwise from North.
12
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STRONG MOTIONS FROM IMPERIAL VALLEY EVENTS

One of the objectives of this study was to provide Green's functions appropriate
for strong motions in the frequency domain of 10 to 0.1 Hz. Unfortunately, we do
not have broadband data at these intensity levels so that we must rely on recordings
from the low gain Wood-Anderson (100x).

At 10 Hz the problem becomes extremely complex and the motions no longer
separate into the P-SV and SH systems. Also, we no longer expect events of this
magnitude (M, > 5.5) to be as simple as the small events discussed earlier. Thus,
it is difficult to assess the adequacy of our results, since we can only compare
predicted motions at Pasadena based on independently determined source studies
from near-in data at Imperial Valley. Three-component data may help resolve the
source properties by providing more data, and this subject will be addressed in a
later effort. At this stage, we will examine only the 1979 Imperial Valley earthquake
as an example. The secondary energy, arriving about 40 sec after the initial motion
that accompanies many of the shallow events in the Valley, will be discussed later.

Several inversions were done on the 1979 Imperial Valley main shock. The general
consensus of the rupture includes an initial 10 km deep epicenter that ruptured
northwestward along the Imperial Fault at a rate of 75 per cent of the shear velocity;
the rupture then continued on at a shallower depth (Hartzell and Helmberger, 1982;
Olson and Apsel, 1982; Hartzell and Heaton, 1983) Archuleta (1984) holds a slightly
different conclusion on the rupture process, with an initial strike-slip source at
about 8 km depth rupturing northwestward. Subsequent rupture occurred at two

inversion . 2 sec filtered 4 gec filtered
Models Synthetics synthetics synthetics

2 12
Hortzell 8
Heimberger

4
Hortze!l 8

Heoton

Archuleto

Olsen B
Aspel

W‘“’:
A
ling

EARS

S0sac

Fic. 12, Simulstions ohum:f motion of the 1979 Imperiai Valley event using four inversion models
(Olson and Aspel, 1882, Hartsell and Helmberger, 1982; Hartsell and Heaton, 1983; Archuleta, 1884).
Amplitudes are given in cm for a moment of 5.0 X 10* dyne-cm.
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F1G6. 13. Comparison of 4-sec filtered tangenital motion against predicted synthetics.

main locations, both at about 10 km depth, with a minor dip-slip rupture at about
30 km from the epicenter along the strike of the fault. The Hartzell and Helmberger's
mode] (model HH1) and the Hartzell and Heaton’s model (model HH2) are very
similar, while Olson and Apsel's model (model OA) is a more continuous model,
which can be simulated using nine segments of rupture. We attempt to model this
1979 main shock by treating each rupture segment in each inversion model as an
earthquake source. Using the same mechanism as inverted by the above workers,
we combine our synthetics with the mechanisms; and then add the segments up
according to the corresponding delay time along the fault. Simulations of such
strong motions appropriate for the Pasadena torsion are shown in Figure 12 with
the corresponding inversion models.

A comparison of the filtered data with the synthetic predictions is displayed in
Figure 13. The synthetic responses shown in Figure 12 require a time derivative to
compare with the corresponding WA record in displacement which tends to empha-
size the high frequency tails such as in the Olson-Apsel model. In general, all of
these models display some merit, although it appears that the two models on the
left fit the waveform data somewhat better. The important point in this comparison
is not which model fits better but that complex earthquakes (multiple ruptures) can
be probably distinguished from simple events when BB Green’s functions are
available. Thus, this type of regional data from historic events can be used to help
delineate rupture patterns along important fault segments.
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DiscussioON AND CONCLUSION

Many of the events in the Imperial Valley data set have a secondary arrival that
is about 60 sec late (Fig. 10), which we have neglected. There are several possibilities
for the secondary arrivals: (1) Source structural effects, which include three-
dimensional scattering due to the Imperial Valley basin structure; (2) Source
parameters effects, which suggest double events or complicated faulting mecha-
nisms; (3) Receiver structural effects, which are local effects due to receiver being
in or near a basin; and (4) Path complications, which suggest structural effects
along the same path that are not in the present model.

Source structura! effects would result in waves arriving at the receiver along
different azimuths. We determined by complex polarization studies (Vidale, 1986)
on the three components that the late arrival was traveling along approximately
the same azimuth as the main arrival. So we believe that this late arrival comes
mainly from the same ray azimuth as the main arrival, though there is a clockwise
rotation after the first arrival at Pasadena. This effectively rules out possibility (1).

The three events we studied at Anza, the Borrego Mountain distance, and the
Coyote Mountain events show no secondary arrival at all. The arrivals have
relatively simple waveforms. The hypothesis that the secondary arrivals on the
Imperial Valley events are effects of the local receiver structure is then ruled out
because of the absence of such arrivals on the other records of events outside the
basin.

We are now left with possibilities (2) and (4). It is fairly unreasonable to attribute
double mechanisms to all events with secondary arrivals. However, shallow events
have secondary arrivals, while deeper events do not. The secondary arrival also has
lower frequency than the main arrival as recorded on the long-period instrument
and are not found in high-frequency records. These features suggest that this

E Dip Slip Strike Slip
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responses along a profile from IV to PAS for an idealized basin mode). Note the
sharp edge of the basin typical of faulted structures at the

western edge of this particular basin.
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secondary pulse has traveled as a trapped surface wave in the surface sediments to
the edge of the basin and regenerates into a normal Love wave.

A number of numerical profiles with sources placed at various depths in a variety
of basin models were generated to test the above hypothesis. When the source is
situated in the sediments and when the basin ends sharply, the secondary arrival
becomes particularly strong, as displayed in Figure 14. Basin models with gentle
dipping edges do not show the secondary arrival and apparently scatter the surface
waves at lower ray parameters, probably teleseismically, as found in the study by
Stead and Helmberger (1988).

The broadband responses displayed in Figure 14 do not contain the instrument
and suggest that the secondary arrival is not depleted in high frequency as observed.
Thus, the observed secondary arrival has lost its high frequency by attenuation in
the soft sediments or, perhaps, the source excitation is very low stress drop. This
subject is best pursued with broadband three-component array data and will be
addressed in a subsequent paper.

In conclusion, we have demonstrated that many of the complexities of interme-
diate-period regional Love waves can be explained by 2-D models. The added
modeling parameters allow the creation of complex dispersed wave trains to develop
in basins and then travel relatively large distances with only slight modifications.
The usefulness of Green's functions from such models will be explored in future
efforts.
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SUMMARY

The effect of transition regions between continental and oceanic structures on the propagation
of L, waves from continental sources is examined. In particular, the attenuation due to
variations in layer thickness in such transition regions is calculated and explained for a suite of
simple models. The measured attenuation, due to the geometry of the transition regions
between the oceanic and continental structures within a partially oceanic path with source and
receiver in a continental structure, is at most a factor of four for frequencies from 0.01 to
1Hz. This is inadequate to explain the observed extinction of L, along such paths. This
extinction has previously been attributed to the effects of the transition region geometry. The
method used to calculate the results presented in this study is developed and its validity and
accuracy are demonstrated. Propagator matrix seismograms are coupled into a Finite Element
calculation to produce hybrid teleseismic SH mode sum seismograms. These hybrid synthetics
can be determined for paths including any regional transition zone or other heterogeneity that
exists as part of a longer, mostly plane-layered, path. Numerical results presented for a suite
of transition models show distinct trends in each of the regions through which the wavefield
passes. The wavefield passes through a continent—ocean transition region, then a region of
oceanic structure, and finally through an ocean—continent transition region. When an L,

wavefront passes through a continent-ocean transition, the amplitude and coda duration of
the L, wave at the surface both increase. At the same time, much of the modal L, energy
prevnously trapped in the continental crust is able to escape from the lower crust mto the
subcrustal layers as body waves. The magnitude of both these effects increases as the length
of the transition region increases. When the wavefront passes through the region of oceanic
structure further energy escapes from the crustal layer, and produces a decrease in L,

lmphtude at the surface. The rate of amplitude decrease is maximum near the transition
region and decreases with distance from it. When the wavefield passes through the ocean—
continent transition region a rapid decrease in the L, amplitude at the surface of the crust
results. The energy previously trapped in the oceamc crustal layer spreads throughout the
thickening crustal layer. Some of the body wave phases produced when the wavefield passes
through the continent-ocean transition region are incident on the continental crust in the
ocean—continent transition region. These waves are predominantly transmitied back into
the crust. mmherbodymvephuesrewhdepthsbelowthedepthofthebneofthe
continental crust before reaching the ocean~continent transition and, thus, escape from the
system.

Key words: synthetic seismograms, L, waves, continental margins, finite element,
attenuation

INTRODUCTION

This paper preseats a study of the propagation of L, waves
across ocean—continent transition regions. The transition
regions are represented by simplified models each consisting
of a crustal layer with a smoothly varying thickness above a
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balf-space. The wavefields transmitted through the transi-
tion region models are caiculated to model L,. The modal
interpretation of L, on which the alculanon of synthetic
seismograms is hued will be justified below. The
importance of the method introduced in the next paragraph
and its application to studies of L, propagation in major
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arcas of study such as tectonic mapping and nuclear
discrimination will be explained, and the new results this
method will make possible will be discussed and related to
previous work.

The changes to a L, wavefield, as it travels across a
transition region, are modelled using a hybrid method which
combines the Finite Element method (FE) and the
Propagator Matrix technique (PM) (Harkrider 1964, 1970,
1981). PM seismograms for L, waves from a continental
source are coupled into a FE calculation which propagates
the L, wavefield across the continent-ocean boundary.
Results from the FE calculation are then coupled into a
second FE calculation which propagates the L, wavefield
through an ocean to continent transition region. The results
of cither FE calculation may be propagated through a region
of horizontally uniform waveguide by coupling them back
into a PM calculation using the Seismic Representation
theorem (RT) (de Hoop 1958). The FE to PM coupling can
be used to economically investigate the effects of long ocean
path lengths between regions and is the subject of later
papers. Here we restrict ourselves to regions in and near
transition zones separsted by short (=150 km) ocean paths.

One of the important types of observational studies of L,
has been to distinguish regions with oceanic crustal
structures from those with continental crustal structures.
Press & Ewing (1952) and Bath (1954) observed extinction
of L, when the propagation path included an oceanic
portion of length greater than 200 km, and high attenuation
or extinction when the oceanic path length was as short as
100km. This led to the commonly used assumption that
paths which pass under oceans but do not attenuate L, are
continental. The results of the present paper seriously
challenge the interpretation that paths with short oceanic
portions which show litle or no L, attenuation are
pecessarily continental. They may necessitate the reassess-
ment of some of the results of studies of L, in many regions
of the world (Press, Ewing & Oliver 1956; Savarensky &
Valdner 1960; Bolt 1957, Lehmann 1952, 1957; Oliver,
Ewing & Press 1955; Herrin & Minton 1960; Wetmiller
1974, Gregenen 1984; Kennett & Mykkeltveit 1984).

Another major use of L, waves is in the determination of
magnitudes, m,, , of explouons and earthquakes. Different
types of magmtudes including m,, , are compared to
discriminate .between the two types of sources (Blandford
1982, Pomeroy, Best & McKevilly 1982). m,
measurements are also used to derive y, the coefficient o
anelastic attenuation, which is important in many types of
wave propagation and attenuation studies and can be
employed to assess the possible destructiveness of
earthquakes. It is important to understand if reflections,
refractions, or diffractions from changes in crustal thickness,
genenally ignored in studies measuring m,, or y will

produce significant effects pot accounted for in the

interpretations given (Nuttli 1973, 1978, 1981, Herrmann &
Nuttli 1975, 1982; Street 1976, 1984; Street, Herrmann &
Nuttli 1975; Street & Turcotte 1977; Jones, Long & McKee
1977; Bollinger 1979; Barker, Der & Mrazek 1981; Nicolas
e al., 1982; Dwyer, Herrmann & Nouttli 1983; Chung &
Bemreuter 1981, Singh & Herrmann 1983; Campillo,
Bouchoo & Massinon 1984, Herrmann & Kijko 1983).

The preferred interpretation of L, is in terms of a
superposition of higher mode surface waves. This higher
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mode surface wave interpretation of L, was initially
unpopular because, in its earliest forms, based on
fundamental mode Love waves alone, it did not explain the
vertical and longitudinal components and the long coda.
However, it subsequently superseded the alternate explana-
tion in terms of channel waves trapped in the crust above a
low-velocity layer for the foliowing reasons. Oliver & Ewing
(1957, 1958), Oliver, Dorman & Sutton (1959) and Kovach
& Anderson (1964) showed that all components of L, could
be interpreted by considering both higher mode Rayieigh
and Love waves. Knopoff er al. (1975), Panza & Calcagnile
(1974, 1975) and Bouchon (1981, 1982) used the higher
mode interpretation of L, to calculate synthetic seismo-
gnams, which demonsmte that a low-velocity channel
below the crustal waveguide was unnecessary. Other phases
previously defined in terms of the channel model have been
successfully modelled using the higher mode surface wave
model. Schwab, Kausel & Knopoff (1974) and Mantovani
et al. (1977), considered S,, Panza & Calcagnile (1975)
considered R, and L, and Stepbens & Isacks (1977)
considered the transverse component of S,. Clearly, the
multimode surface wave explanation of L, is valid and
aseful. However, the long L, coda observed is still not
completel}' understood for phase wvelocities less than
2.8kms™". The attribution of this long coda to diffraction
and reflection from crustal structure is supported by the
results presented in this study.

A simple parallel of the multimode surface wave
interpretation, which is a wvery useful aid in the
interpretation of the wavefields presented in this study, is
the representation of the multimode L, armmivals as
superpositions of multiply reflected post-critical SH and SV
rays trapped in the crustal layer. Bouchon (1982) used this
type of interpretation for L, amivals for group velocities
between 3.5 and 2.8km s, Pec (1967) and Kennett (1986)
also used the ray approach to address properties of L,. This
type of interpretation can also be used to explain where
structure causes conversions from L, to distinct body waves
or from one SH mode to another. Gregersen (1978)
discusses conversion between different modes of Love waves
and between Love and Rayleigh waves at ocean—continent
boundaries. For near normal incidence conversion between
Love and Rayleigh waves is shown to be a small effect.
However, future 3-D modelling would be necessary to
confirm these conclusions based on an approximate method.
Understanding conversion between modes of L, and
between L, and other phases is an important part of
understanding the mechanisms of attenuation of L, along
mixed paths.

Many attempts to understand the pnopagmon of seismic
disturbances across regions of varying structure such as
transition zones have been made. First, simple models were
used and analytical solutions were derived for soluble
special cases, then increasingly complicated models were
considered as available computational power increased. The
types of models that have been used to approximate
transition regions can be separated into several types which
are illustrated in Fig. 1. Sato (1961a) derived analytical
results for models of type 1a (Fig. 1a) with L=0and L >0.
Kennett (1973) considered the problem of seismic waves
interacting with a layer or layers in which properties change
accoss a surface perpendicular to or at a specified angle from
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Figere 1. Types of models used in studies of propagation of Love
waves across continent-ocean boundaries, in order of increasing
complexity. (a) shows two homogencous layered regions, 1 and 3,
separated by an intermediate region, 2, in which elastic properties
vary smoothly between their values in regions 1 and 2. (b) shows a
layer over a half-space with 2 step change in the thickenss of the
layer. (¢) shows a mode! with a smooth change in thickness, either
at the surface or the Moho. (d) shows a model with a smooth
change in thickness both at the surface and the Moho. The
variations in (a), (c), and (d) occur in a tramsition region of

length L.

the layering. Several types of solutions for models of type 1b
(Fig. 1b) bave been derived. Sato (1961b) obtained
approximate analytical reflecion and transmission
coeflicients, for A << A, where A is the crustal thickness and A
is the incident wavelength. Hudson & Knopoff (1964),
Koopoff & Hudson (1964), Hudson (1977) and Bose (1975)
derived similar solutions without applying the A<«ai
constraint. Alsop (1966) developed an approximate solution
for these coeflicients applicable when all energy remains in
Love waves. Gregersen & Alsop (1974, 1976) extended this
method to the case of non-normally incident Love waves.
They found that for oblique incidence at angles less than 40°
sormal incidence is a good approximation. Kazi (1978a,b)
derives solutions that account for and demonstrate the
importance of the Love waves converted to scattered body
waves at the surface step. Martel (1980) wsed a FE
sechnique and spatial filtering to isolate the diffracted body
wave component. Many workers bave studied models of
type 1c (Fig. 1c). Knopofl & Mal (1967), and Knopofl et al.
(1970) derived an analytical solution usable when the slope
of the surface (or Moho) in the transition region is small.
Pec (1967) calkculated the dispersion of Love waves
propagating in a wedge-shaped layer and found that the
largest changes in phase velocity and amplitudes occur at
shori periods. Boore (1970) studied the propegation of a
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simple Love wave (T >20s), using the Finite Difference
(FD) method. He noted that in the region of the transition
mode conversions and conversion to other types of waves
scemed to be important. Lysmer & Drake (1971, 1972) and
Drake (1972) use a FE method based on Zienkiewicz &
Cheung (1967). This formulation requires that the incident
moddenerxyueualyequlwtbemmohhemﬂectedund
transmitted modal energy. The body waves present in the
system produce distortions to the elastic layer over a
half-space eigenfunctions, which increase for higher modes.
Drake & Bolt (1980) used the same method with a model of
type 1d (Fig. 1d) to study a more realistic mode! fitting
fundamental mode phase velocity data for events normally
incident on the California continental margin at periods
between 4.4 and 60's.

All the studies discussed in the previous paragraph used
periods much longer than those that will be considered in
the following discussions. The shorter periods used in this
study allow the examination of the effects of transition
regions with L many times A. The energy escaping from the
crustal waveguide is shown in this study to be an important
component of the explanation of the attenuation of the L,
phase travelling on partially oceanic paths. Previous studxes
considered mainly fundamental mode Love wave input
sampled at a selection of discrete frequencies, while the
forcing functions used in this study are a sum over a range of
frequencies on the fundamental and first five higher
branches. Of the previous studies, only Kennett &
Mykkeltveit (1984) bhave generated realistic seismograms
similar to those used in this study; instead other studies
concentrated on measuring phase velocities and transmission
and reflection coeflicients.

PROPAGATOR TO FINITE ELEMENT
COUPLING

The hybrid method used in the present study allows the
determination of synthetic L, seismograms for propagation
paths which inciude a non-plane-layered transition region as
a small portion of a longer mostly plane-layered path. A
graphical representation of the hybrid method is shown in
Fig. 2. No transition region is illustrated in the figure, but
any type of structure may be inserted into the FE grid.
Within a plane-layered medium, that is outside any
transition region, the ‘trapped’ wavefield can be mathemati-
cally constructed at any point receiver using the PM
technique and an appropriate form of a source repre-
sentation. The resulting far-field seismogram will include not
only a direct arrival but also the superposition of many
multiple critical and post-critical reflections which produce
the surface waves in the wavetrasin. Each such PM
seismogram is represented in Fig. 2 by a single solid line
from the source to the receiver. A set of PM seismograms,
for a specified source function, are generated at a group of
intermediate receivers, spaced in z, located at the
grid edge notes of the FE grid, a borizontal distance X from
the source. This type of set of seismograms will be referred
to as a set of forcing functions. The depth spacing between
the intermediate receivers, Ax, is also the node spacing in
the FE grid of rectangular elements into which the wavefield
is to be coupled. mmm‘mommlpphedn
displacement time history constraints on the left-most
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Figure 2. Geometry used to explain the coupling of PM seismograms from a source outside a FE grid into a FE grid. The two long horizontal
lines show the free surface and the boundary between the layer and the half-space. The source is shown as an asterisk. Two columns of FE

sodes are shown as dots. The vertical line

ing the dots and the short borizontal line perpendicular to it are grid edges. All receivers

located at nodes on the left-most edge of the FE grid will be referred to as intermediate receivers. The heavy solid line from the source to the
surface receiver in the grid denotes the direct analytical seismogram, the solid lines between the source and the grid edge nodes denote the
direct forcing functions, and the dotted lines indicate the source to receiver paths, for the sources created by the spplication of the forcing
functions at the grid edge. Integration over all dashed paths gives the bybrid seismogram.

column of nodes in the FE grid, thus, completely specifying
the subsequent motion at all points in that FE grid. Each
node to which a forcing function is applied becomes a source
point in the FE calculation. Any point in the FE grid may be
chosen as the receiver. The receiver is assumed to be a
borizontal distance X2 from the source. The hybrid
seismogram recorded at this receiver is a superposition of
the seismograms produced by each source point along the
FE grid edge. Each of these component seismograms are
indicated by a dotted line in Fig. 2.

The seismograms used as forcing functions can be
generated using more than one type of source. For a line
source, in 8 homogeneous half-space or a layered half-space
the applied forcing functions are u,(x, y, z). For a double
couple point source the PM solutions can be expressed in
cylindrical coordinates as

Dk, r
(66r, . 1)1 = . (9, ) ),

where r is the source to receiver distance, &, is the
wavenumber of the Love wave mode being considered,
H'®(k, r) is the Hankel function of the second kind, and
0,(¢. 2) is a factor containing all terms relating to the
source and (0 propegation in z. 2-D and 3-D propagation
show different rates of spreading with distance. The
rectangular grid FE code used is based on the SWISFE
code (Frazier, Alexander & Petersen 1973), and is a 2.D
Cartesian formulation. Thus, for comsistency the forcing
functions applied to the FE grid edge should be 2-D
Cartesian results, u,. It must be demonstrated that the
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application of 3-D cylindrical forcing functions to a 2-D FE
grid produces hybrid seismograms that approximate the 3-D
cylindrical solution [§(r, @, 2)] at the receiver. It is
demonstrated below that the discrepancies in the 3-D
cylindrica! hybrid solution due to the 2-D propagation in the
FE portion of the path are negligible or easily corrected for.
Consider a FE grid with its leftmost edge a distance X = r,
from a source, and a receiver, where hybrid and analytical
synthetic results are recorded, a distance X2 =, from the
source. Define the distance propagated within the FE grid as
Ar=p,—r,. Since we are considering the case of r large,
ky 3 v/r, [0(r2, ¢, 2)] can be expressed in terms of r,, ¢, 2,
and Ar as
r, + Ar .
[6(r3, @, 2)) = [0(r,, ¢, 2)) " exp (—ik, Ar)

-[ﬁ(’lr¢tznm(“l‘k|’4’) ar«<r, k n>»1.

Now, for a line source the analogous moda) continuation
velation is,

Kg(x3, 2) = uy(xy, 2) exp [~ik, (x; - x,)]
= ug(x,, z) exp (~ik, Ax).

Comparing, we see that both expressions have the same
form. In each case the displacement at r, can be expressed
s the displacement st 7, multiplied by a propagation factor.
A 2-D FE or RT calculation will give the same propagation
factor for each mode as the analytical expression above. If
the displacements at 7,, v(r,, ¢, 2) or w,(x, z), and the
propagation factors, exp (—ik, Ar) or exp(-ik, Ax), are
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Pguere 3. Sample PM mode sum synthetic seismogram for SH L, 1500km from the source. The seismogram includes modes with periods
between 0.5 and 100s. The fundamental and the first five higher modes are used. The seismogram has been bandpass filtered between 0.01 and
1 Hz, and bas the WWSSN short period instrument response convolved with it. The box shows the time window used to select the forcing
function. The oumbers along the axis indicate the group velocities of the arrivals.

correlated by considering x,=7, and Ar=Ar, then
0(rz, @, 2), the 3-D solution, will be given by u,(x,, z), the
result of the 2-D FE or RT calculation. 'lbemrcemustbe
many As, from the boundary and r must be normal to the FE
grid edge and in the plane of the FE grid.

The PM scismograms [O(r, ¢,2)] used as forcing
fonctions in the tests discussed below show the overall
character of the arrivals seen in data in the L, group velocity
range of between 2.8 and 3.5kms™! (Fug 3). 1'he

time function with rise time 0.2s, and decay time 0.2s is
wsed. The rectangle in Fig. 3 delimits the time window used
0 seloct the portions of the seismograms wsed as
displacement time history forcing functions. No intrinsic
stieoustion is included in the seismograms, since the object
this study is to determine the attenuation cansed by the
of the layers of the earth model. The forcing
bave been fiitered between 0.01 and 1 Hz using a

3.2 30 2.8

Fig. 3 in that no instrument response has been applied. The
instrument response is applied to the FE result.

DESIGNING FE GRIDS

The FE grids discussed in this section are designed to
represent the two classes of transition models illustrated in
Fig. 4. The difference between individual transition models
within each class was L, the length of the transition region.
Real ocean to continent type transitions occur over lengths
of 50-300km (Keen & Hyndman 1979; Hinz er al., 1979,
Eittreim & Grantz 1979; Le Douaran, Burrus & Avedik
1984). However, for the present studies, an upper limit on L
of 100 km was imposed by the computation limits discussed
below. The lengths used for this investigation were a step
transition (L =0km), L =25, 50 and 100 km.

Results in this paper were generated using a Ridge
computer at Caltech and a Convex C1 computer at the
GSC. The largest FE calculation was allowed up to 48 cpu
bours on the Ridge. Moving to a faster machine like the
Coavex or a supercomputer does not allow the increases in
grid length that might be expected. As the path length in the
grid increases, numerical dispersion becomes a more serious
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Figare 4. Explanation of terms and illustration of the model classes
wsed to describe the behaviour on pessage through a tramsition
vegion. The beavy line between the water layer a.3d the crustal layer
is the surface. The sloping portion of this surface is the continent to
ocean boundary (COB) for the C/O transition model and the ocean
0 continent boundary (OCB) for the O/C transition model.
Similarly, the slopin; dashed line between the crust and mantle
layers is the crust to mantie boundary (CMB) for the C/O transition
and the mantle to crust boundary (MCB) for the O/C case. The
length of the transition, L, is the distance from B to D, B is
referred to as the beginning of the transition, D as the end of the
trangition, C ss the centre of the transition. A is Skm from B,E is
$ km from D.

difficulty making decreases in grid spacing necessary. Also,
the grid length grows 50 per cent faster than L. To obtain a
significant increase in grid length & more accurate higher
order FE or FD scheme would be advisable and double
precision calculations might become necessary.

The first class of models used in this study describe
continent t0 ocean transition regions. In further discussions
these models will be referred to as C/O models, and the
transitions they represent as C/O transitions. Similarly, the
second class of models described ocean to coatinent
transition regions, and will be referred to as O/C models.
The transitions they frepresent will be referred to as O/C
transitions. The coatinental reference model consists of a
X2km thick crustal layer over a half-space. The oceanic
reference model consists of two 5 km layers, one water and
one crust, over a half-space. Each C/O or O/C transition
region is characterized by s continuous rate of thinning or
thickeaing of the crustal layer. In all models the crustal layer
has an SH wave velocity, of 3.5kms™" snd a density of
2.7gcc™?, while the half-space has an SH wave velocity
of 45kms™" and a density of 3.4gcc™’. Each clas of

%0 drive the C/O transition and coutinental reference FE
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calculations are a vertical section of 60 mode sum
scismograms, calculated at depth intervals of 0.5km
beginning at the surface, for a strike slip source at §km
depth at a distance X = 1500 km. The forcing functions for
the O/C transition and oceanic reference tests are recorded
during the 50 km C/O transition calculation. They consist of
a depth section of hybrid seismograms recorded 25 km past
the oceanic end of the 50 km C/O transition region, 1755 km
from the source. The vertical spacing within the depth
section is 0.5 km. All other BCs are identical for all models.
The transmitting BC is applied to all edge nodes of the grid,
excluding only the free surface and the nodes to which
forcing functions are applied.

The first step in designing a grid for FE calculations is to
determine grid spacing, dx, and the time step duration, dr.
For tional efficiency it is important t0 maximize dx
and dr. At least six nodes per wavelength (Frazier er al.,
1973) are needed to avoid numerical dispersion problems.
To maintain numerical stability, the wavefront can travel no
more than half the grid spacing per time step. Thus, dx and
ds must be chosen to satisfy

Vein dx
dr = o d:ssz

where f is the highest frequency in the waveform to be
modelled and V,,, and V., are the minimum and
maximum S velocities respectively in the dominant part of
the model. In this study, we are considering L, waves with a
predominant period of approximately 135, in a medium with
Vow=3.5kms™! and V_,,=4.5kms™’. Thus, we have
chosen dx = 0.5 km and dt = 0.05 5.

The next step in designing the grid is the determination of
the dimensions of the grid, ax and ay, the duration of the
input forcing functions, 7,,,, the duration of the calculated
time series, 7., o 8nd the Jocation of the transition region
within the grid. The vertical column of podes at which
forcing functions are applied lie at the leftmost edge of the
FE grid. This column of nodes at the grid edge appears as a
rigid boundary to energy incident upon it from within the
grid. The criteria below, used to choose the location of the
transition region within the grid, are designed to avoid
contamination from reflections from the leftmost grid edge.
The location of the transition region within the grid is
defined in terms of the distances from the leftmost grid edge
to positions A, B, C, D, E, in Fig. 4. The values of these
parameters were chosen to satisfy two criteria.

(a) A scismogram of duration D, seconds can be recorded
at A (Fig. 4) before the multiple reflection of the input
wave from the beginning of the transition, B, to the
leftmost grid boundary and beck again reaches A.

(b) A seismogram, uncontaminated by the multiple reflec-
tion, with duration D, seconds can be recorded at the
receiver closest to the right-most edge of the grid. This
receiver is defined to be at a distance x, from the
jeft-most grid edge.

Criteria A and B concern themselves only with reflections
from the left-most odge of the grid. Non-physic . . ~%*">ns
from the bottom and the right-most edge of i grid are
removed wsing transparent BCs which will be discussed
later. The BC cannot be applied at s node constrained by a
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forcing function. The duration D, was chosen to be 55, the
observed coda duration for a SH L, mode sum seismogram
at a distance of 1000 km from the source. For all the models
used in this study the values of parameters defining the size
of the grid and the location of the transition region within it
are given.in Table 1. Distances are given as the number of
modes in the horizontal direction from the left edge of the
grid to the depth section or boundary indicated. The model
mames consist of a number that indicates L, then the model
type. Reference layer over half-space models are indicated
by ref.

SAMPLING FE SOLUTIONS

Analysis of the effects of various transitions on the
waveforms and amplitudes of L, waves using FE techniques
requires that the motions of the nodes of the FE grid be
sampled so that the progress of the L, waves across the
transition can be observed. Two methods of sampling are
wsed in this study. Complete displacement time histories are
recorded for selected nodes, and the displacements of all
nodes in the grid are recorded at given time intervals. The
first approach produces seismograms which can be used to
fllustrate variations of amplitude and waveform with
distance or depth, the second approach produces time slices
and is & clear way to illustrate the propagation and
distortion of wavefronts caused by passage through the
inbomogeneous structure. Time slices are self scaled so that
muccessive time slices may show the same absolute amplitude
as a different symbol size. Thus, the same region of the
waveform will appear darker on a time slice with a given
maximum amplitude than on another time slice with a larger
maximum amplitude. This difference must be remembered
The amplitude of the first large positive and negative
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first few cycles of the trace. Unfortunately, the initial high
frequency peaks, which are affected by the problems
discussed above, yield the maximum peak to peak
amplitude. This indicates that peak to peak amplitude will
be a poor measure of the L, amplitude. A more stable
measure of amplitude correspondence between seismograms
of this type is the rms amplitude calculated over some time
window appropriate to the seismograms being compared:

/ E‘llmv(n)’l T
. ‘m‘- :—— ..-.-B
m At

where m is the pumber of points in a sampling window of
duration T, seconds. Such an rms amplitude measure will
reduce the effects of S or S, contamination and of any other
The evaluation of rms amplitudes is straightforward once
the sampling window has been chosen. The location of the
sampling window with respect to the arrivals of maximum
amplitude, and the durstion of the trace contained within
the sampling window, bave s significant effect on the value
of the rms amplitude. Care must be taken to choose
windows for two sets of results that produce meaningful
comparisons. When results of two separate FE calculations
are being compared, at comresponding nodes, both
scismograms should begin at the same absolute time. When
successive seismograms in a depth or distance section, from
a single calkculation, are being compared, the duration of the
sampled portion of the trace with negligible amplitude that
occurs before the first arrival must be constant. A genenal
approach which does mot require the use of theoretical
travel times was chosen to determine windows in the latter
case. The first and last point in the sampling window are
selected by bracketing the portion of the seismogram with
significant amplitude according to the following algorithm:
(1) Set a cut-off value for the amplitude at some fraction of
the maximum absolute value of amplitude in the
seismogram (usually 0.01 or 0.05).

(2) Let the sample at the location of the maximum absolute
value be the first sample in each of two series. One series
proceeds forward in time, the other backward. Scan each
series until a subseries of samples » seconds in duration, all
with amplitudes smaller than the cut-off amplitude, is found.
‘The first point in each of these subseries defines an endpoint
of the scismogram.

(3) Calculate the s amplitude for sampling windows with
durations 15, 20,28, ...,85s. If the duration of a sampling
window exceeds the durstion of the scismogram then no rms
amplitude is determined.

This aigorithm yields a series of sms amplitude values for

similar the fit is considered 0 be excellent. When trends in
rms amplitude are discussed, the longest window common to
all seismograms being studied will be wsed. If rms amplitude
trends change when window length is varied these changes
will be discussed since examining the bebaviour of the rms
amplitude as a function of sample window length can give
insight into the mature of and the underlying reasons for
misfit between methods.
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TESTS OF ACCURACY: SH L, MODE SUM
INPUT

The BCs are introduced to remove the non-physical
reflections created by the artificial grid boundaries at the
ends and bottom of the grid. Removing these reflections
from the portions of the seismogram of interest by extending
the grid requires an increase in execution time of between
30 and 500 per cent. As a comparison, the approximate BC
wsed in this study increases execution time by 3-5 per cent.
The BC used here was suggested by Frazier er al. (1973).
The average of the rigid boundary and the free boundary
displacements for each constrained node is calculated at
each time step. For a mormally incident plane wave this
average exactly represents the transparent boundary.
However in practice the incident wavefront is neither
pormally incident nor a plane wave. This means that the
actual value at the transparent boundary is a linear
combination of the rigid boundary and free boundary
solutions whose coefficients depend upon the angle of
incidence of the energy. The boundary condition used here
assumes that the average of the two solutions will in most
cases be the best approximation to the transparent boundary
that can be simply implemented.

A series of tests were conducted to verify the accuracy of
the coupling method and the efficiency of the transparent
BCs. The tests used the continental reference mode! and a
set of 90 forcing functions calculated for a strike slip point
double couple source at a depth of 8km and a distance
X = 1500km. Transparent BCs were applied to all grid
boundaries except the free surface and the nodes to which
forcing functions were applied.

The results of the accuracy and BC tests presented below
are illustrated in Fig. 5. A continental reference structure is
used for both the FE and PM portions of the path. This
allows the direct comparison of the hybrid solutions and the

direct analytical synthetics calculated entirely with the PM
technique. Four separate calculations were performed. First,
L, mode sum direct analytical seismograms for the same
source used to generate the C/O transition forcing functions
were calculated. Next, seismograms were generated using
the hybrid method in a grid long enough (100 x 50 km) to
prevent contamination from end reflections. Third, seismo-
grams were generated using the hybrid method and a short
(50 x 50 km) grid with the transparent BC applied at each
pode on its right-most edge. Finally, the previous FE
calculation was repeated without the transparent BCs. The
excelient agreement between the analytical and hybrid
synthetics verifies the walidity of the coupling method
applied to a layered half-space. Small discrepancies are seen
in the higher frequency component, particularly in the first
203 of the trace. In the last trace of each group in Fig. § the
single and multiple reflections from the grid edge are clear.
Comparison of the long grid and the short grid with and
without BCs shows that most of the reflected amplitude has
been removed by the BCs. The misfit is lower for the longer
period component of the traces. The significant misfit is
coincident with refiections, and is largest for the multiple
reflections. Despite visible differences in waveform the
seismograms shown in Fig. S have rms amplitudes that agree
to within less than 2 per cent for all rms window lengths.
This indicates that small changes in waveform may be
expected but the rms amplitudes of the seismograms should
be stable and not significantly contaminated by incompletely
removed reflections from the grid edges. The increased
discrepancies in botb waveform and amplitude introduced
by the multiple reflections will be avoided in the transition
FE grids described below. This reduces the discrepancies in
rms amplitude to less than 1 per cent.

Reflections from the bottom edge of the grid should also
be considered. The transparent BC can be very ineffective
for the small angles of incidence seen at the grid bottom

¢ DIRECT I Ak fnt el
SYNTHETICS

a fi AR AR REKHt, A ] AtA s A A 4
V' HYBRID 1R R L T 1A
LONG GRID

s, HYBRID AL ,(i’v lll"|’.,’6r._..xln' LY. "
SHORT GRID *
WITH BC 1.40

i ‘:‘)‘l', i Ik

"II‘A 1 Afa ik ,'
B yerio —vh A Ill! VTibY l“!l o
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Pigere 5. Scismograms recorded st the surface for X2 = 1520 and 1540 km. The first selomogram in each group is a direct synthetic, the second
Is 3 bybrid synthetic determined wing the long grid (200 x 100), the third and fourth are hybrid synthetics determined using s short (100 x 100)
grid with and without the transperent BC, respectively. When the boundary condition is applied it is applied only at the right-hand edge of the
grid. The sumber beside each of the hybrid synthetics is the rms amplitude ratio between that hybrid seismogram and the direct synthetic.
Seiamograms bave been bandpass filtered between 0.01 and 1 Hz and have been convolved with the short period WWSSN instrument response.
Arrival times of the single and multiple reflections are indicated by the arrows below each group of seismograms.
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when a distant source is considered (Regan 1987).
Fortunately, in a layered Inlf-spwe where L, waves can be
modelled as the superposition of mulnply reflected
post-critical SH waves in the crust, most of the energy in the
SH type L, waves should be trapped in the crustal layer.
'lheumeshmdnctmedhter(ﬁgsG 12) show that the SH
typel.. waves propagating in a layer over a half-space are,
in tbemost part, confined within the layer; rms amplitudes
agree 10 within less than 0.1 per cent with and without the
transparent BCs (Regan 1987). However, the purpose of the
present stydy is to examine the effects of coatinental-
oceanic boundaries on the transmission of L, mode sum
sciamograms. When the crustal layer is thinned or thickened
with distance, the modes are no longer completely trapped
within the layer. Energy can be converted to modes
compatible with the local layer thickness and to other forms
including body waves that can propagate into the hali-space.
When the waveficld reaches the second layered structure,
-odunétmppedmthmthenewuuulhyerwmlukom
of the layer, rapidly at first, then at a steadily decreasing
rate. This implies that wide angle reflections of emergy
escaping from the crustal layer towards the bottom
boundary of the grid could possibly contaminate transition
calculation results. However, the model grids do not extend
far enough, in the x direction, beyond the transition for this
to be a problem. The energy will encounter the rightmost
end of the grid, either on the downgoing or the upgoing
portior: of its path, rather than reaching a receiver at or near
the surface as a wide angle reflection. Since a wavefront
which has a small angle of incidence with the bottom
boundary has a large angle of incidence with respect to the
end boundary, most of the amplitude of the wavefront
incident on the right-most end boundary will be transmitted
rather than reflected. Therefore, it is removed from the
grid. Careful grid design will prevent significant contamina-
tion from wide angle bottom reflections.

CHANGES TO L, WAVETRAINS ON
PASSAGE THROUGH A C/O TRANSITION
AND THEIR DEPENDENCE ON L

When a waveficld consisting of SH L, mode sum energy
pases through a C/O transition region such as that
filustrated in Fig. 4(a) several important things happen. In
order to clearly explain these effects and their variation with
Lonemuummkofthemveﬁeldmmofminadem

boundary .

the angle between the upper boundary of the crustal
layer and surface at = 0. The incident angle and
the angle of reflection for the ath interaction of a ray with a

4
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boundary (crust-mantle boundary, CMB, or crust—ocean
boundary, COB) within the transition will be denoted j,.
Similarly, the transmission angle for the nth interaction of a
ray with a boundary, will be denoted j,. As long as the ray
remains in the transition region, j, =i —n(¢., + ¢.2) + ¢.2,
where ¢, = ¢, and @2 = §, if the first interaction is with
the COB, and ¢, =¢,, and ¢.,=¢, if the first
interaction is with the CMB. The angle of incidence is j, for
rays transmitted into the oceanic crustal layer, and j,, for
rays reflected back into the continental crustal layer. When
the first reflection of the ray exiting the transition region,
from the upper or lower boundary of either the continental
or occanic crustal layer, is the nth reflection then
Joon ™ Joc ™ jn + Pocs OF Joon X Joc ™ fn + Pcm, TESPECtively.

The incident wavefield is composed of the trapped modal
SH L, energy arriving from the source, and is complete and
untransformed only in the region of continental structure. If
the incident wavefield within the continental structure is
viewed as a superposition of multiply reflected post-critical
SH rays with a range of incident angles, its components can
be followed into the transition region. As the wavefield
passes through the transition region the rays of which it is
composed may each interact with the COB or the CMB.
Each time a ray interacts with a boundary its incident angle
Ja is Teduced. A ray remains a component of the incident
wavefield until an interaction with a boundary causes j, to
become negative and the ray to be turned back towards the
source. Thus, the incident wavefield within the transition
region is defined to be the superposition of all rays travelling
towards the region of oceanic structure. A few sample rays
of an incident wavefield are shown in Fig. 6(a). All rays
within the crustal layer of the transition region, shown as
solid lines, are part of the incident wavefield.

The reflected wavefield is composed of all the SH rays
which have been turned back towards the source by their
interaction with the CMB and the COB. Thus the reflected
wavefield is a superposition of rays for which j, has become
<0 for some previous interaction with a boundary. An
example of such rays can be seen in Fig. 6(a). The rays
which are part of the reflected wavefield are shown as dotted
lines within the crustal layer of the transition region. The
reflected waveficld travels sourcewards through the crustal
Iayer of the transition region, and the region of continental
structure. In the region of continental structure the reflected
waveficld can also be conceived of as a superposition of
trapped and leading modes reflected from the transition
region.

The transmitted wavefield is composed of all the energy
transmitted through the transition region into the crustal
layer of the region of oceanic structure, and all the energy
transmiitted into the mantie layer. The transmitted wavefield
is divided into four components, two in the mantle layer,
one in the crustal layer, and one in both layers in the region
of oceanic structure. These components are all easily
explained in terms of the SH ray interpretation. The two
components within the mantle layer are the forward
transmitted wavefield and the reverse transmitted wavefield.
Only energy crossing the CMB into the mantle layer is
included in these components. The forward transmitted
wavefield is the portion of the incident wavefield which is
transmitted across the CMB into the mantle layer when the
rays forming the incident wavefield (rays with j,>0)
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Pigwre €. Definition of the components of the wavefield in terms of the ray interpretation. (a) shows exampies of types of rays which constitute
the incident waveficld (solid rays in the crustal isyer), the reflected wavefield (dotted rays in the crustal layer), the forward transmitted
wavefield (solid rays in the maatle layer), and the reverse transmitted wavefield (dotted rays in the mantle layer), within the transition region.
(a) also shows an example of a type of ray which constitutes the transformed transmitied wavefield (solid ray transmitted through the transition
into the crustal layer in the region of oceanic structure). Energy from the illustrated ray leaks into the mantie layer in the region of oceanic
structure. Rays with post-critical angles of refiection in the crustal layer of the oceanic structure are produced similarly, ard also coastitute
components of the transformed transmitied wavefield. (b) shows the types of rays which constitute the direct transmitted wavefield. All such
rays travel through the transition region without interacting with the CMB or the COB.

interact with the CMB. All rays, shown as solid lines in the and/or COB one or more times as they propagated through
mantie layer of the tramsition region of Fig. 6(a), are the transition region into the oceanic crust. These rays have
mponenuofa-forwudmmedmﬁeld.m values of j, >0 for their last interaction with the CMB
forward transmitted waveficld is present in the transition and/or the COP in the transition region. The values of j,
region and may propagate into the region of oceanic for these rays are appropriate for both pre-critical and
structure. The reverse transmitted wavefield is the portion post-critical reflections. Pre-critical reflections are equivalent
i CMB into the to leaking modes. Energy from these modes is visible as
mantle layer when the rays which form the reflected amplitudes in the crustal layer and in the mantle layer. As
waveield (rays with j, <0) interact with the CMB. The the transformed transmitied wavefield propagates through
revense transmitted wavefield is present in the tramsition the oceanic structure energy from these modes escapes the
region and may propsgate into the region of continental oceanic crust and propagates in the mantle layer.
structure. Fig. 6(s) shows rays which form pert of a reverse Post-critical reflections correspond to trapped modes and
transmitted wavefield as dotted lines within the mantle layer continue to propagate through the oceanic crustal layer.
of the transition region. The directly tranamitted wavefield is Allnodelsuedintharmdonoﬂhuuudylnvemal
& superposition of the SH ray: in the incident wavefield that SH welocity of 3.5kms™", crustal density of 2.7gem™>
pass through the crustal layer of the transition region and mtleSHvdodtyot4Shns“ndmﬂedenmyof
isto the crustal layer of the region of oceanic structure 3.5gcm™>. All FE grids have the transmitting BC applied to
without interacting with the CMB or the COB. The rays are all grid edges excepting the free surface and the surface on
then trapped in the oceanic crustal layer. Some rays from a which the forcing functions are applied. All calculations use
directly transmittod wavefield are illustrated in Fig. 6(b). the same set of 60 forcing functions determined for a strike
The transformed transmitied wavefield is preseat only in the slip source at a depth of 8 km, a distance of 1500 km from
region of oceanic structure. It is composed of a the grid edge. Each of the components of the wavefield
superposition of rays which have interacted with the CMB discutsed above will be fllustrated in the time slices or
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hlfwmveﬁeldnenmtheﬁmmnmedm So, the
plotted amplitudes of all the displacements in the third time
aheehvebeennplﬁanuyteducedbylahn; making the
same disturbances appear smaller. In the fourth time slice
the highest amplitude regions of the wavefield bave
propagated past the right-most edge of the grid. The
maximum amplitude is much smaller so the same
disturbai ces appear to have much larger amplitudes. The
fifth time slice shows a further amplification of the

the reflected wavefield (<5 per cent of incident amplitude)
visible as a series of broken vertical bars near the left-most
end of the gnid. All sections of the incident wavefield show
triangular regions of maximum amplitude. The extent of
each triangular region, in the x direction, increases for
regions of the wavefield incident on the left end of the grid
at a later time. The end of the incident wavefield is seen, in
the fifth time slice, about midway between the left grid edge
and the arrow, to the right of the visible reflected
component. The C/O transmitted wavefield is visible in the
last three time slices as disturbances travelling through the
half-space from the CMB towards the right-most edge of the
grid. The reverse transmitted wavefield is clearly visible in
the fifth time slice, and present in the last three time slices,
as disturbances travelling through the half-space from the
CMB towards the grid bottom and the source. For the
earliest disturbances in the half-space the forward
transmitted waveficld propagates along a path approxim-
ately parallel to the crust-mantle interface in the oceanic
region, and the reverse transmitted wavefield propagates
along paths nearly parallel to the CMB. As time progresses,
the propagation paths of both the forward and reverse
transmitted wavefields approach the normal to the CMB.
Energy escaping from the through the oceanic crustal layer
forms a forward bending arc of higher amplitudes in the
mantle half-space. As the high amplitude regions of the
forward transmitted wavefield propagate longer distances or
propagate along paths with larger vertical components, the
tails forming due to leakage from the occanic crustal layer
detach from the forward transmitted wavefield.

Figure 8 shows scismograms recorded at the receivers
along a surface section. These seismograms illustrate the
magnitude of the concentration of amplitude at the surface
of the crust seen in the time slices, and the change in the
waveforms as the wavefield passes through the transition.
Fig. 9(a) shows the variation of 60s rms amplitude with
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distance, X2, from the source for each of the C/O transition
FE calulations. Amplitudes produced using the different
C/O transition lengths are plotted at the same scale and are
proportional to the source strength. The numerical values of
amplitude shown on the amplitude axis are chosen so that
the maximum value on the axis is one. To avoid blank
spaces in the plots the minimum value was not chosen to be
gero. The amplitudes recorded at nodes along the surface of
the crustal layer within each transition region show a general
increase as one moves from B towards D. The duration of
the coda with amplitudes above one-third of the maximum
peak to peak amplitude is also increasing. This increase in
coda length supports the attribution of the later portions of
the observed coda to diffraction and reflection from crustal
structure. The size of the increase in rms amplitude is
smallest for the step transition and increases as L increases.
Superimposed on the general increase is an oscillatory term.
The method of scaling the distance coordinate within the
transition region, in Fig. 9, makes the coincidence of
maxima and minima at approximately the same fraction of
the transition length for all L's considered very clear.
Increases in amplitude before reaching distance B are due to
energy reflected from the tramsition boundaries back
towards the source. The amplitude increase near B is largest
for a step transition and decreases as L increases. The
fluctuations in amplitude following the transition region
show that the wavefield has not completely adjusted to the
oceanic structure in the few kilometres beyond the transition
regions illustrated in this figure.

Figur= 10 shows seismogiams recorded on depth sections
at distances B and D. Fig. 11 shows the variation of 55 s rms
amplitude with depth at several distances. The seismograms
shown in Fig. 10(b) are recorded at the depth of the surface
of the oceanic crustal layer. They show a 50 per cent
increase in amplitude as the energy travels from B to D.
They also show that the amplitude of the coda becomes a
larger portion of the maximum peak to peak amplitude, that
is the envelope of the coda decays more slowly at D than at
B. An increase in rms amplitude (20 per cent) and a slower
coda decay is also seen if the free surface seismograms at B
(Fig. 10a) and D (Fig. 10b) are compared. The seismograms
recorded at the nodes at the depth of the bottom of the
oceanic crustal layer (Fig. 10c) show a small decrease in rms
amplitude across the transition. Comparing Fig. 11(b) and
(d) the increase at the surface of the oceanic crust and the
decsease at the base of the oceanic crust are clear for all
transition lengths. Examination of seismogra ns at the nodes
at distances B and D with depths between Fig. 10(b) and (c)
shows that the amplitude increase between B and D is
largest at the surface of the crust and decreases rapidly
towards the base of the crust. This statement is supported by
the amplitudes illustrated within the crust in Figs 11(b) and
(d). These amplitudes in Fig. 11 form s summary subset of
many measurements. Comparison of the seismograms at B
and D in Figs 10(d) and (e) show that the amplitudes of the
seismograms at depths below the base of the oceanic crust
are decreased by passage through the transition region, from
B to D. The transmitted waveforms are similar to the
incident waveforms. The reduction in transmitted amplitude
increases as depth increases. The latter observation is more
obvious when the amplitude versu. depth plots in Figs 11(b)
and (d) are compared. Figs 11(a) and (b) shows that small
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Pigare 7. Tinc wices recorded dusiag the 25 ki~ /O transition calculation. The crustal layer and the ends and bottom of the FE grid which
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the largest symbol size. A minimum amplitude cut-off of 2 per cent is defined below which 5o symbol is plotted. Sixty forcing functions were
wsed. The time since the initiation of the FE calculstion is shown above the right end of each grid. The arrow above a time slice shows the
location to which the disturbances moving at 3.5 km s~', seen at the left end of the previous time slice, have moved in the intervening duration.
The aumber sbove and 10 the left of each time slice is the scaling factor to bring that time slice to the same amplitude as the first time slice.
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Pigure 8. Surface section of seismograms recorded for a 25 km C/O transition calculation. The numbers to the left of each seismogram indicate
the location of the node at which that scismogram is recorded. Seismogram 1 was recorded at B, scismogram 11 at D. The pumbers increase as
one moves farther from the source. The spacing between receivers in the transition zone is uniform. The numbers above the right end of each

seismogram give the 603, rms amplitude of that seismogram.

amplitudes are seen at depths below the continental crustal
layer. A large discontinuity in amplitude oocurs at the base
of the continental crust. Fig. 11(c) shows that this
discontinuity remains at the depth of the base of the crustal
layer within the transition region. Fig. 11(c) also shows that
the amplitudes in the mantie layer within the transition
region are maximum immediately below the CMB, and
decay rapidly with depth below that boundary. Fig. 11(d)
shows that the amplitude of the transmitted seismograms, in
the mantle layer above the depth of the base of the
coatineatal crust, at D, decreases as L increases. Below the
depth of the base of the continental crust amplitudes at D
increase as L increases. At distances E and F (Figs 1le and
f), further from the transition region, the magnitudes of
these trends decrease. These observations are further
support for the observation that as L increases larger
eoergies are transmitted acvoss the CMB and that these

eoergies propagate downwards more rapidly. 1

The triangular pattern of maximum amplitudes in the
wavefields (Fig. 7) can easily be explained. Consider the SH
L, energy in the crustal layer as a superposition of
post-critically reflected multiple SH wave reflections. The
critical angle is about 51°. Since the wavefront is
perpeadicular to the ray, the wavefronts that are visible as
the triangular regions of maximum amplitudes should show
angles of incidence with the bottom boundary of the crustal
layer of between 0° and 39°. These are indeed the incident
angles the wavefronts in the time slices (Fig. 7) are observed
to exhibit. Near the front of the wavefield the dominant
angles of incidence are near 0%, that is the regions of
maximum amplitude are almost vertical. Later in the
wavefield the dominant angles of incidence increase causing
the widening triangular patterns of maximum amplitude.
The increase in width of the triangular regions corresponds
to a decrease in group velocity which can be transiated to a
decrease in period and/or a larger contribution from higher
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Wigure 9. Variation in rms surface amplitude with distance, X2, from the source for (s) cach C/O transition calculation (60 s rms), and for (b)
each O/C trantition calculation (50 s rms); rms amplitude is the y coordinate. The two vertical kines labelled B and D, indicate the limits of the
transition region. Outside the transition region the scale is uniform. The distance scale (x coordinate) in the transition region is different for
each L. Within the transition region all distances are plotted with respect to an origin at B, as fractions of L. Each line, labelled with the L it
represents, was generated using rms measurements at intervals of 5 km along the crustal surface.

modes. The later parts of the seismogram are predominantly
higher mode energy.

The growth in amplitude for seismograms at crustal
surface nodes as distances range from B to D can be
explained in terms of energy concentrated in the thinning
crustal layer of the transition region. As j, decreases toward
gero for successive n's, the reflection points at the
boundaries in & transition region are separated by smaller
horizontal distances (Fig. 68). This implies that the density
of nays will increase as the crustal layer thins, thereby
be expected at the CMB if no energy was transmitted across
that boundary. In fact, for & mode! with the same geometry
but with the mantie half-space replaced by water to disallow
transmission acrows the CMB, an amplification of 75 per
oent is observed at both boundaries. However for continent
ocean boundary models, as j, and thus, j,, decrease the

displacement transmission coeflicient,
T8 p— L

cos (j,) + 1.6 cos (J.)’

increases. When more energy is concentrated at the CMB
more energy is transmitted across it. The escape of energy
from the crustal layer to form the transmitted wavefield also
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explains the distribution of amplitude with depth within the
crustal layer of the transition. The amount of concentration
of amplitude increases a3 the distance from the CMB
increases and the effects of the energy escaping across it
become weaker.

Extending the above arguments explains the increase in
the amount of concentrated energy, the increase in the
magnitude of the transmitted wavefield, and the decrease in
the amplitude of the reflected wavefield as L increases. Figs
12(a) and (b) show a pair of ray diagrams for a 25 km C/O
transition region, Figs 12(c) and (d) shows a similar pair of
ray diagrams for 8 100 km C/O transition. These diagrams
are useful when explaining the trends observed in the results
presented above, and their on L. Comparing
Figs 12(s) and (c) or (b) and (d) shows that as L increases
the angles ¢, and ¢, decrease causing j, to decrease
more slowly and aliowing the number of reflections, m,
within a transition to increase. When L increases, ..
increase in m causes an increase in ray density and explains
the increase in concentrated smplitude at the COB. When L
increases, by the same arguments, the amount of energy
concentrated at the CMB also increases. The transmission of
this energy across the CMB causes the amplitude of the
transmitted wavefield 10 increase as L increases. It should
be noted that increasing L reduces the rate at which the
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Figure 10. Depth sections of seismograms recorded at B and D for a 25 km C/O transition calculation. The aumbers above the right end of
each seismogram show the 60 s rms amplitude. Successive rows show pairs of receivers at increasing depths. (a) shows receivers at the depth of
the surface of the continental crust, (b) shows receivers at the depth of the surface of the oceanic crust, (¢) shows receivers at the depth of the
base of the oceanic crust, (d) shows receivers midway between (c) and (¢), (¢) shows receivers at the depth of the base of the continental crust.

crustal thickness changes, so at 8 given distance from the
beginning of a transition region the change in amplitude
transmitted across the CMB per unit horizontal distance
becomes smaller as L increases. However, integrated over
the entire length of the transition region the amount of
energy transmitted across the CMB increases. Since the
amount of amplitude concentrated at the COB and thus
transmitted into the oceanic crustal layer, and the amount of
energy concentrated at the CMB and thus transmitted across
the CMB both increase as L increases the amplitude of the
reflected waveficld must decrease as L increases. Let
seismogram A be a hybrid seismogram recorded on depth
section A (Fig. 4) in a C/O transition calculation. Let
seismogram B be the hybrid seismogram, recorded during
the continental reference calculation, at the same depth and
distance from the source as seismogram A. The reflected
component is measured by analysing the component which
remains when seismogram B is subtracted from seismogram
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A. Reflected amplitudes measured in this manner show a
clear decrease as L increases.

Figure 12 can be used to explain how and why the
direction of propagation of the forward and reverse
transmitted wavefields varies as time progresses. When the
arrivals of the highest group velocity reach the CMB the
resulting forward transmitted wavefield travels along a path
approximately paralle] to the crust half-space interface in
the oceanic structure, and the resulting reverse transmitted
wavefield travels along a path almost parallel to CMB. The
incidert angles j, are maximum. As |j,| for a given n, and
the group velocity, decrease the values of j,, decrease. Thus,
the propagation direction of both transmitted wavefields
spproach the pormal to the CMB. As L increases larger
values of n are possible within the transition region. For
each value of n a transmitted wavefield is created at the
CMB. Therefore, the range of propagation directions seen
at a given time increases as L increases.
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gure 11. Veriation of 55s rms amplitude with depth oo depth sections A, B, C, D, E, of Fig. 4, and F, located 10 km beyond E, for each
C/O transition model. Each plot illustrates results for one depth section. The letter at the upper left of each plot identifies the location of the
depth section. Amplitudes for the surface node and nodes equally spaced down the depth section (Az = 2.5 km) are shown. The two solid

horizontal kines on each diagram

show the base and top of the crustal layer at the location of the depth section. If only one solid line is present

then it indicates the base of the crust. In this case the surface of the crust is at the top of the vertical axis.

The magnitude variations of the directly transmitted
wavefield and the transformed transmitted wavefield can
also be easily explained. Let the thickness of the oceanic
crust be 7., and the thickness of the continental crust be
Toreon- For reflections immediately preceding the beginning
of the transition region some rays (i > 90 — arctan [(7T_ ..~
Two)/L]) can propagate through the transition region
without interacting with either the CMB or the COB. These
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rays, which form the directly transmitted wavooeld,
continue 0 bounce with the same post-critical angles of
incidence st the crust-mantie interface and the free surface
as they did in the continental structure. They represent the
energy transmitted through the transition directly, without
changes in period or phase velocity. For these rays no mode
conversion has occurred and no energy has been converted
to other phases. These rays form the unchanged components
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Figure 12. Qllustration of ray paths within a 25 and a 100 km C/O
trangition structure. Diagrams are drawn to scale. Each diagram
shows rays with angles of incidence, i, 55°, 65°, and 75°, at the free
surface and crust-mantle interface in the continental portion of the
model. These angles sample the possible range of post-critical
incident angles (>51°). The incident angle, j,, and the transmission
angle, j,, at the crustal boundaries in the transition regions are
fabelled. The upper diagram in each peir shows propagation paths
for rays that encounter the CMB before the COB. The lower
diagram shows propagation paths for rays that encounter the COB
before the CMB. The arrows indicate the direction of propagation
of the wavefront along the ray.

of the eigenfunctions defining each mode. The range of
angles, i, over which the direct transmission ocurs decreases
as L increases. Thus, more unconverted energy is
transmitted through shorter transitions. In contrast, the
transformed transmitted wavefield is composed of rays
which interact with the CMB or OCOB before being
transmitted into the oceanic crustal layer. Such rays show
changes in group velocity that indicate modal conversions
are oocurring. Energy is also converted into other phases as
it escapes across the CMB to become part of the forward
transmitted wavefield. As discussed above, the energies
transmitted into the oceanic crustal lsyer and across the
CMB both increase as L increases. As L increases, this
increased transmitted energy is partially counteracted by the
effects of decreased transmission of unconverted energy.
This helps explain why the differences due to L are small.
The diagrams in Fig. 12 demonstrate why energy crosses
the crust-mantle interface in the oceanic structure following
the transition, why this transmitied energy is maximum near
the transition and decreases as the distance from the
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transition increases, and why this transmitted energy
increases as L decreases. The paths illustrated in the second
25 km transition outline show one-way modes which are not
of appropriate frequencies to be trapped within the oceanic
crustal layer, enter that layer. Analogous paths for rays
which interact first with the CMB or rays which interact
multiple times with the crustal boundaries in the transition
region also exist. All such rays produce rays at pre-critical,
Joc <51°, angles within the oceanic crust. For any such ray,
the transmission coefficient at each successive reflection
from the crust-mantle interface is T().,‘) Thus, the

n of reflected amplitude in the crust
after the nth bounce is A, = [1 ~ T(j,)]"A, where A is the
original amplitude. Clearly, the amount of escaping energy
decreases with distance. For a shorter transition j,, for a
given i, is smaller. Thus, a larger range of angles j, <51°
are produced for each path through the shorter transition.
This means a higher density of pre-critical rays and higher
smplitudes in and escaping from the oceanic crustal layer of
shorter transitions.

The use of the interpretation of L, waves in terms of
multiply reflected SH rays to explain the FE results has been
instructive. However, the many interacting effects involved
in determining the properties of the reflected, converted,
and transmitted wavefields would be extremely difficult to
predict using this approach. Thus, the FE method is
necessary to determine which effects are important and
which need not be considered.

CHANGES TO L, WAVETRAINS PASSING
THROUGH AN O/C TRANSITION REGION:
THEIR DEPENDENCE ON L

Next we will consider the passage of a wavefield consisting
of SH type L, mode sum energy, which has already passed
through a continental region followed by a C/O transition
region of S50km length, through an O/C transition. An
example of an O/C transition is illustrated in Fig. 4(b).
Propagauon through such an O/C transition has several
effects on the wavefield. Results of the calculations for
propagation through & 50km O/C transition will be
presented in detail so as to illustrate these effects. The O/C
transition tests using a variety of L’s will be summarized to
illustrate how these effects depend on L. The noted effects
and their variations with L will be explained. The set of
forcing functions used to drive the O/C FE calculations
were recorded during the FE calculation for the 50 km C/O
model.

Before proceeding to these discussions the errors
introduced due to the truncation inherent in coupling the
C/O transition FE results into the O/C transition grid
should be mentioned. The finite vertical extent of nodes
driven by forcing functions at the left-most edge of the O/C
transition grid will cause a vertical truncation of the
incoming wavefield. Also, any reflections included in the
seismograms recorded for use as forcing functions will be
added to the forward propagating wavefield in the O/C
calculation. These effects tend to increase the amplitudes at
the surface of the oceanic layer near the left end of the grid.
The uncertainties introduced by the coupling process appear
to increase the amplitudes in the second grid by as much as
3 per cent. Therefore, they could possibly lead to a slight
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snderestimate of the magnitude of the attenuation effect, In the fifth time slice they bave exited the grid. The
but should not icad to an overestimate. maximum amplitude in a given time slice decreases with
A series of time slices, shown in Fig. 13, illustrates the FE time in the third to i i
calculation results for the S0 km long O/C transition. The amplitudes in the transition region decrease as the
highest amplitude concentrations visible in the first four wa iti )

slices correspond to the maximum amplitudes in the sormalizing by the largest amplitude in each slice causes
seismograms illustrated in Fig. 14. The first two time slices sdentical disturbances to increase in extent and intensity in
illustrate the wavefield travelling through the oceanic successive slices. Triangular regions of maxima can be seen
structure. The third time slice illustrates the passage of the in the oceanic crust but they are not pearly so clear as those
highest amplitude portions of the wavefield through the seen in the continental crust of the C/O transition. The third
tnansition region. In the fourth time slice these highest and fourth time slices clearly show that the energy which .
smplitude regions appear at the right-most end of the grid. was previously trapped in the oceanic crustal layer
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Figere 13. Time slices recorded during the 50 km O/C transition eaiculation. Details are identical to Fig. 7. 40« rms amplitudes are shown.
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6 281

o 55

Pigure 14. Surface section of seismograms recorded for 8 50 km O/C transition calculation. Details explained in Fig. 8.

distributes itself throughout the crustal layer as it passes
through the transition region and the region of continental
structure. The amplitudes remain much larger pear the
surface, and decay rapidly with depth. The fifth time slice
shows triangular regions maximum amplitude are beginning
60 appear in the coatinental structure. Further propagation
in x is necemary before the wavefield becomes fully adjusted
%0 the mew layering in the region of continental structure.

The disturbances seen in the half-space of the oceanic
region of the O/C transition grid contain significant energy.
Examining the time slices shows that for a subset of these
disturbances, equivalent to the forward transmitted
wavefleld discussed earlier, the z component of translation
in the half-space is increasing for successive groups of
disturbances. This is due to the interactions at the CMB in
the C/O transition as explained eartier. It is more visible in
these time slices than the C/O transition time slices due to
the increased distance from the CMB. It is clear that these
packets of amplitude are transiated rapidly enough in z that
some will pass into the half-space below the continental

e

crustal layer before they reach the O/C transition region.
Thus, the energy contained within them escapes the system
and is not reconverted to L, energy when the wavefield
passes through the O/C transition. The amount of energy
escaping from the system in this manner increases as L, or
the length of the intermediate oceanic path, increases.

Figure 14 shows a surface section of seismograms for a
50 km O/C transition. Fig. 9%(b) shows the variation of 55
ms amplitude with distance, X2, from the source for each
of the O/C transition FE calculations. A decrease in rms
amplitudes is seen a3 one moves along the surface of the
oceanic crustal layer spproaching the transition region. This
decrease is clear for short rms windows and almost vanishes
for window length of 653 or more. This indicates that the
portion of the coda with amplitudes comparable to
the maximum amplitude is decreasing in length, that is, that
the rate of coda decay is increasing. Superimposed on this
slow decrease in amplitude it an oscillatory term with
amplitude approximately 15 per cent of the mean amplitude
at the surface in the oceanic structure. The rms amplitudes
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Pigare 1S. Varistion of 55s ras amplitude with depth. Details are as explained in Fig. 11.

recorded st modes along the surface of the crustal layer
within each O/C transition region decrease as one moves
from B towards D. The size of this decrease is smaliest for
the step transition and increases as L increases. The rate of
decay shows some tendency to become smaller towards the
end of the transition. The superimposed oscillations seen in
the O/C transition results are much smaller than those seen
in the C/O transition results. They appear to be confined
mear the beginning of the transition region. The oscillation
in amplitude following the transition region shows that the
wavefield has not fully adjusted to the continental structure
in the few kilometres beyond the tramsition regions
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illustrated in Fig. 9(b). Additional results which are not
illustrated show the rms amplitude continues to decrease
siowly until the wavefield readjusts to the new continental
structure.

Figure 1S shows the variation of 55s rms amplitude with
depth. At the depth of the surface of the oceanic crustal
layer propagation through the transition reduces the rms
amplitude by more than a factor of two, and the peak to
peak amplitude by 25 per cent. This indicates that the
duration and amplitude of the cods are decreasing more
rapidly than the amplitude of the largest arrival. At depths
between the surface of the continental crust and the surface




of the oceanic crust amplitude decreases with depth. Then
energy incident on the MCB is largely tranamitted across the
MCB into the crustal layer. Some of this energy eventually
escapes across the CMB in the region of continental
structure. The amplitudes below the crustal layer of the
transition region decrease slowly with depth or even
increase with depth. An increase of amplitude with depth
below the crustal layer indicates that energy is travelling
down towards the grid bottom and out of the system being
cousidered.

Most of the energy incident on the MCB is transmitted
acyoss it. Thus, in the last four time slices, the reflections
from the MCB are not casily distinguished from the later
portions of the incident wavefield. The pattern of
displacements seen in the oceanic half-space is distorted
when the energy producing it is transmitted across the
MCB. The uppermost portion of a disturbance crosses the
bonndary’ﬁm.ndbeginstomovemonnowly.'rhe
remainder of the disturbance, still in the mantle layer
continues to move with the mantie’s faster velocity. As the
disturbance moves through the length of the transition, an
increasing proportion of it moves into the crustal layer. This
results in a slope being superimposed on the portion of the
disturbance which bas propagated back into the crustal
layer. The slope,

s'm L(UM ve)'

Unm

is dependent on L, the velocity in the crustal layer, v,, and
the velocity in the mantle, vy,. The slope, in this case about
tan 52°, is observed easily in both the second and third time
slices. It is also seen in the fourth and fifth time slices.
However, in these time slices the amplitude incident from
the oceanic crustal layer dominates that transmitted from
the oceanic mantle layer making observation of the slope
more difficult. If a realistic Q model were included the
energy travelling through the half-space would be
attenuated faster than the energy travelling through the
crustal layer. However, since the energy incident from the
oceanic crustal layer dominates in the highest amplitude
portions of the trace, the increased attenuation in the
half-space should not be important in this study.
The effect of the O/C transition region on the energy
prev:ouslymvclhngmtbeoeumcuwalhyermﬂnowbe
discussed. Concentrations of amplitude incident from the
oeumcaumlhyermveluptbemﬁceonhcoca As
they propagate up the OCB the lower edge of the amplitude
concentrations are no Jonger constrained by the lower edge
of the oceanic crustal layer. Consequently the energy can
migrate downwards towards the depth of the base of the
oontinental crustal layer. This diffusion of energy can be
explained using » mechanism which is the converse of that
wed to explain the concentration of energy in the C/O
transition. The incident angle for the ray perpendicular to
eaxch wavefront, j,, increases as n increases. Subsequent
refiection points are separated by larger horizontal distances
producing s dilution in ray density and thus a decrease in
smplitude. However, there is an important difference that
simplifies the analysis of the O/C transition. Incident angles,
J1, for all rays trapped in and travelling through the oceanic
crustal layer are greater than S1°. For n > 1 these angles
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increase. Therefore, no energy originally trapped in the
oceanic crust is transmitted across the MCB, or refiected
back towards the source.

Observations indicate that the length of the intermediate
oceanic path between the C/O and O/C transitions is
important. The results of this study suggest some reasons
why this is s0. For short paths energy transmitted into the
mantle layer has little time to travel towards the bottom of
the grid and thus out of the region of consideration before
much of it passes back into the crustal layer in the O/C
transition region. This implies that there may be a critical
length of intermediate oceanic path beyond which enough of
the energy bas escaped from the region of interest that
amplitudes of the attenuated L, recorded after the O/C
transition would be reduced sufficiently to explain the
observed data. To completely analyse this assertion requires
the use of the RT coupling method for continuing FE
calculations through a plane-layered structure using RT
integration and PM Green’s functions. The accuracy of the
pumerical implementation of this method must be
established before such calculations can be presented.
Therefore, the discussion of the numerical implementation
of this method and of the results examining the effects of the
intermediate path length in the oceanic structu_e will be left
for other papers.

CONCLUSIONS

This paper presents a discussion of the propagation of L,
slong partially oceanic paths and the atteauation of L, due
to propagation through the transition regions between the
continental and oceanic portions of these paths. The
transition regions are modelled by a crustal layer with
smoothly varying thickness which connects the continental
and oceanic structures. The results will be discussed in three
parts. First, propagation through the transition from
continental to oceanic structure. Then, propagation through
the oceanic structure and, finally, propagation through the
transition from oceanic to continental structure.

The effects produced when a SH L, mode sum wavefield
is propagated through a continent to ocean (C/O) transition
region, and their dependence on the horizontal extent of
that transition region, L, will now be summarized.
Amplitudes at the surface of the crust and in the crust are
amplified by as much as 50 per cent as the waveficld passes
through the transition region from the continental structure
to the oceanic structure. These amplitude increases in the
crustal layer have been explained by the increased ray
denrity in the thinning crustal layer. The amount of
amplification increases as L increases. Increased numbers of
reflections within a longer transition region, cause an
increase in ray density, explaining the increase in energy as
L increases. Amplification is maximum at the surface and
decreases with depth until the base of the oceanic crust is
reached. In the transition region energy is transmitted across
the boundary between the crustal layer and the mantie layer
(the CMB) but not across the boundary between the crustal
layer and the ocean layer (the COB). Thus, the
amplification is maximum at the COB and decays as the
CMB is approached and the effects of energy transmitted
across the CMB increase. The amount of energy transmitted
acrost the CMB increases as L increases. The traaslation
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direction of the forward transmitted wavefield bas a larger
vertical component later in the seismogram when it
approaches the normal to the CMB. Thus, for a longer
transition, with a smaller ¢, and thus a more horizontal
CMB, the path length in the oceanic structure will have a
larger vertical component. This will allow the transmitted
energy to escape the system more readily as L increases.

After the wavefield has travelled through the transition
region it travels through a region of oceanic structure. While
travelling in this oceanic region additional energy escapes
from the crustal layer. This leakage is largest near the end of
the transition region and decreases with distance away from
it. The size of the decrease in amplitude is controlled by the
energy i wavefronts propagating through the oceanic
crustal layer with pre-critical angles of incidence. At each
successive reflection of such a wavefront at the crust
half-space interface in the oceanic structure, a fraction of
the total amplitude remaining, 7'(j,) is transmitted across
the interface. Thus, the total amplitude of this component
decays most rapidly in the first kilometres of the oceanic
structure while the incident wave still has significant
amplitudes.

After propagating through the oceanic region, the
wavefield propagates through an ocean to continent (O/C)
transition region. As the wavefield travels through the O/C
transition region the surface amplitude decreases rapidly.
The energyv forming the concentrations of amplitude
previously t.. ped in the oceanic crustal layer travels up the
boundary between the oceanic and crustal layers (OCB) in
the transition region while spreading throughout the depth
extent of the crustal layer. The maxima in these regions
remain at the snrface. The amplitude decreases rapidly with
depth down to ‘.c crust-mantle interface. The amplitude
incident upon we boundary between the mantie layer and
the crustal layer (MCB) in the O/C transition region from
the oceanic half-space is transmitted across it with a
resulting distortion in the wavefield. The form of this
distortion is the superposition of a slope,

Sope = o[£ 721

on to the disturbance incident at the MCB after it has
passed into (~~ continental crustal layer.

Finally, atteuu.tion of L, propagating along a mixed path
with si ) le transition regions and an oceanic path length of
147 km, is not sufficient to explain the observed values. The
high est attenuations observed produced a reduction of &
factor of two to three in amplitude. Observations of the
trends due to varying L indicate that a longer C/O transition
could increase the attenuation. But, even using the optimal
L attenuatic 1 of more than a factor of four would not be
expected. Thus, other factors and/or more complex
structures must be considered to explain the observed
attenuation of L, along mixed paths.
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SUMMARY

In this paper the methods for representation theorem coupling of finite-element or finite
difference calculations and propagator matrix method calculations (Harkrider) are developed.
The validity and accuracy of the resulting hybrid method are demonstrated. The resulting
hybrid technique can be used to study the propagation of any phase that can be represented
in terms of an SH mode sum seismogram, across regional transition zones or other
beterogeneities. These heterogeneities may exist in regions which form subsegments of a
longer, mostly plane-layered, path. Examples of structures of interest through which such
waves can be propagated using these techniques include, regions of crustal thickening or
thinning such as continent—ocean transitions or basins, anomalous bodies of any shape
located in the path, and sudden transitions from one layered structure to another. Examples
of the types of phases that may be propagated through these structures include Love waves,

L, S, ands,.

Key words: coupling, non-homogeneous paths, representation theorem, seismograms

1 INTRODUCTION

The hybrid method is simple in concept. The propagation
path is divided into planc-layered segments, and non-plane-
layered segments. The non-plane-layered segments may
contain arbitrary structures. The propagator matrix (PM)
technique is used to propagate the disturbance through the
plane-layered segments and the finite element (FE) or finite
difference (FD) method is used to propagate it through the
son-plane-layered segments. The source is assumed to lie
within a plane-layered region. Since neither coupling
technique (PM to FE or FE to PM) provides a complete
solution if it is applied at the physical boundary between
plane-layered and non-plane-layered regions, the FE or FD
grid must contain not only the complex region but also
segments of each of the plane-layered structures which
adjoin the ends of the complex region. Reflections from the
complex structure within the grid must be carefully
considered when designing the grid (Regan 1987) 10 ensure
that their effects are included in the fina) solution. The
wavefield is propagated from the source to the boundary of
the FE or FD grid containing the first complex region using
the PM method. The method used to transmit the wavefield
acros the boundary into the FD or FE grid containing the
soo-planc-layered region is straightforward (Regan &
Harkrider 1989; Regan 1987). The wavefield is then

44

propagated through the non-plane-layered region using the
FE or FD method. Next, the wavefield can be transmitted
across the bounJjary between the FD or FE grid containing
the pon-plane-layered region and the remainder of the
second plane-layered region using the representation
theorem (RT) integration coupling method developed in this
paper. This sequence of procedures can be repeated any
sumber of times so that any number of non-plane-layered
regions can be included in the source to receiver path. The
RT integration coupling method uses a 2-D Cartesian finite
element formulation. Analogous methods for the 3-D case
follow directly.

Many methods have been used to model the propagation
of scismic disturbances scross regions of varying structure
such as transition zones. The types of models that have been
used to spproximate transition regions can be separsted into
several types which are illustrated in Fig. 1.

The simplest type of model (Fig. 1a) consists of two
homogeneous layered regions, 11, and 3 3' scparated by a
vertical boundary or a region 2 2’ in which elastic properties
vary smoothly. Sato (1961a) derives analytical expressions
for the transmitted and reflected waves, the phase and group
velocities, and evaluates the approximate reflection and
transmission coefficients (R and T) in each case. More
recently, Kennett (1973) bhas developed a numerical
technique for solving the problem of seismic waves

J—
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Figere 1. Types of models used in studies of propagation of Love
waves across continent-ocean boundaries, in order of increasing
complexity; (a) shows two bomogencous layered regions, 1 and 3,
separated by an intermediate region, 2, in which elastic properties
vary smoothly between their values in regions 1 and 2; (b) shows a
layer over a half-space with a step change in the thickness of the
layer; (c) shows 3 model with a smooth change in thickness, either
at the surface or the Moho; (d) shows a mode! with a smooth
change in thickness both at the surface and the Moho. The
variations in (a2), (c), and (d) occur in a transitiop region of length

interacting with a layer or layers in which properties change
across a surface perpendicular to or at a specified angle from
the layering.

The next level of model complexity is the inclusion of a
change in the thickness of the surface layer at the
discontinuity between the two structures (Fig. 1b). Sato
(1961b) obtained analytical solutions and thus approximate
expressions for R and T for the special case of a surface step
with height A much less than the wavelength of the incident
wavefield. Hudson & Knopoff (1964) obtained expressions
for more general surface step models. Alsop (1966)
developed an approximate method for determining R and T
which assumes that all energy remains in Love waves.
Gregersen & Alsop (1974, 1976) used an extended form of
the method of Alsop (1966, 1968) to show that normal
fncidence is a good approximation for oblique incidence at
angles of incidence of less than 40°. Bose (1975) used an
tategral =quation formulation to yield asymptotic solutions
at large distances from the step consistent with results
derived for the step models by Regan & Harkrider (1989)
using the PM to FE ocoupling technique that forms part of
the overall hybrid technique. Kazi (1978a2,b) uses a
variational method to show that T increases after the cut-off
frequency when the conversion of Love waves to body
waves at the surface step is considered. Earlier studies by
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Alsop (1966) and Knopoff & Hudson (1964) showed that T
decreased when the body waves were neglected. Martel
(1980) used a FE technique to evaluate propagation of Love
waves across a Moho step. Spatial filtering of the
transmitted and reflected modes to determine transemission
and reflection coefficients allowed the isolation of the
diffracted body wave component. The modal filtering
technique discussed in this paper would provide a simple
way to do such decompositions on FE or FD results
determined for any complex structures. Also these
structures would not mecd to be near the end of the
propagation path as is the case with a pure FE or FD type
calculation.

Studies using the surface step model and the Moho step
model bave been generalized in several ways. We will
discuss only one, replacing the step by a transition region
(Fig. 1c). Knopoff & Mal (1967), and Knopoff er al. (1970)
explained an analytical solution for models of type (1c)
when the slope of the surface (or Moho) in the transition
region is small. Pec (1967) calculated the dispersion of Love
waves propagating in a wedge-shaped layer. Boore (1970)
used FD to study the propagation of a simple Jow frequency
Love wave across a transition region (Fig. 1c). He noted
that in the region of the transition mode conversions and
conversion to other types of waves were important. Lysmer
& Drake (1971, 1972) and Drake (1972), use a FE method
based on Zienkiewicz & Cheung (1967) which includes a
rigid grid bottom and thus allows no energy to escape the
grid. The formulation also requires that the incident modal
energy is exactly equal to the sum of the reflected and
transmitted modal energy. Conversion to body waves is seen
as a distortion of the modal eigenfunctions. Lysmer &
Drake (1971) use this method to study the effect of a
transition of type lc, or 14, on the incident fundamental
mode Love wave energy. They attribute the differences
between their results and those of Boore (1970) to body
wave interference in Boore's results. However, conversion
to body waves and escape of those body waves from the
system defined by the finite element grid play an important
role in understanding the propagation of waves across
regional variations in structure (Regan & Harkrider 1989).
$o, in fact, the method of Lysmer & Drake (1972) with its
distorted eigenfunctions might be interpreted to be the
method containing body wave interference. Thus, the
approach used by Boore (1970) and the approach used in
the present study will provide more physical insight into the
processes of attenuation along complex paths. The method
of Lysmer & Drake (1971) also includes a method for
calculating ‘mode participation factors’. These measure the
ratio of the energy of a single mode seismogram incident on
the complex region and the resulting energy of each single
mode exiting the complex region. Similar ratios can be
determined using the Green'’s function filtering technique
presented in the present study. Both methods are based on
the Love wave orthogonality relations. Drake & Bolt (1980)
used the method of Lysmer & Drake (1972) to study
fundamental mode Love waves normally incident on the
Californiu continental margin. They conclude that the ocean
continent boundary strongly increases the attenuation of
fundamental mode Love waves, as Regan & Harknder
(1989) suggest.

All the studies discussed in the previous paragraph used




periods much longer than those that will be considered in
the following discussions. Most previous studies considered
transition regions with lengths comparable the wavelength
of the incident energy. The shorter periods used in this
study allow the examination of the effects of transition
regions with lengths many times the wavelength of the
incident energy. Of all previous studies mentioned above
only Kennett & Mykkeltveit (1984) and Bouchon (1981,
1982) have generated realistic seismograms, thc latter at
regional distances only. Instead, most studies concentrated
on measuring phase wvelocities and transmission and
reflection coefficients for individual modes. In this study the
input energy is in the form of seismograms containing a sum
over a range of modes for fundamental and overtone Love
waves. This approach produces a realistic output seismo-
gram which can be filtered and decomposed to yield the
transmission and reflection coefficients if they are needed. In
light bf these facts it is clear that the results derived using
the method developed in the present paper can provide a
significant improvement in the understanding of the
propagation of L, waves and other phases that can be
expressed in terms of mode sum seismograms.

2 THE RT INTEGRATION METHOD FOR
FE TO PM COUPLING

To clearly explain the method used to couple finite element
and propagator matrix methods, it is useful to first discuss
some of the foundations on which each method is based,
and to explain the basic concepts inherent in the use of the
representation theorem. In Section 2.1 the representation
theorem will be discussed, and the assumptions that lead to
the form of the representation theorem used in this study
will be presented. The theory used to derive the version of
the PM technique used in the present study is explained in
detail by Harkrider (1964). The notation and the basic
concepts of the PM technique needed to explain the
representation theorem integration coupling technique
developed in the present paper are summarized in Section
2.2. The FE method used in this study is an extensively
modified version of the stress waves in solids code (Frazer,
Alexander & Petersen 1973). The result is an explicit time
domain FE method using a rectangular grid, and the
hourglass correction terms which the rectangular grid
oecessitates (Kosloff & Frazier 1978; Regan 1987). The FE
method can be driven by a source distant from the finite
element grid, as outlined by Regan & Harknder (1989).
Displacement or stress time histories can be recorded at any
node or element centre in the grid. Given these time
histories further details of the particular implementation of
the FE method are not important to the understanding of
the coupling technique. The implementstion of the RT
coupling technique will be discussed in Section 2.3. A
method for determining the accuracy of the RT coupling
results will be presented in Section 2.4. A method for modal
Green's function filtering of finite element or hybrid results
is developed in Section 2.4. Finally, in Section 3, all aspects
of the method are tested using a simple model which enables
the calculation of PM synthetics for direct comparison to the
hybrid resuits.
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2.1 The represeatation theorem and Greea's functions

The basis of the method used to couple the results of a finite
element calculation into the PM calculation is the
application of the representation theorem on the boundary
between the regions in which each method is used. The
representation theorem relates the displacement at any
point, ¢, in a volume V to the body forces £, acting within V
and to the displacements u; and the tractions 7, acting on the
surface S of V. There are many equivalent ways of
expressing the representation theorem, for example (Aki &
Richards 1980, eq. 2.41)

wa0= [ de [[[ 1696w~ 5t 0 av)
v

+ f s L [(Gotw.t- .8 07 1m2. ).
-G8, 1= 5 5. OuE, I d5) (1)

where § is the Jocation of a point on S, x the Jocation of a
receiver in V, u,(3,1) is the p component of the
displacement at time ¢ at x, ¢ is the observation time, t is
the source time, m, is the jth component of the outward
unit normal to S, Tfu(§, ), n) =10, = (4, +u, )0 and
u,(§ v) are the boundary conditions specifying stress and
displacement as a function of source time t for all points §
on S, and G, is the Green’s function which represents the
displacement in the ith direction at x at time ¢ due to a unit
impulse applied in the pth direction at position § at time 1.

The general form of the representation theorem given
above is not suitable for demonstrating how the coupling of
the FE and PM methods is accomplished. To transform it to
& more manageable form it is assumed that no body forces
are present within volume V, and that the medium is
isotropic. Applying both conditions allows the repre-
sentation theorem to be written as follows.

u,(x, ').L:.dtLI{G"t”+AG""u’

+ (G, + Gy Ju}n, dS(E) ¢3)]

where all derivatives are with respect to §.
For the case of SH waves only, eq. (2) can be further
simplified to

wiw. 0= [[ a5 [ [ )G+ Gassadms a5, )

For the 2-D SH solutions at x in V, eq. (3) is integrated
from —w to = over the variable &,. The representation
theorem becomes (de Hoop 1958)

i )= [ v § ) (ot + B sl 4 89
0

where C is the curve defined by the intersection of the
surface § with the x,~x, plane, u(},) is the rigidity at the
depth §,, and the half-space Green's functions I3, and the
forcing functions u,(£,, &,, r) satisfy the initial conditions

Uy == In,=0 isv (52)




J. Regan and D. G. Harkrider

the radiation conditions,

=0 u,,—0 as oo (5b)
and the boundary conditions,

w,=I,,=0 at z=0 (5¢)

Following the notation of de Hoop (1958) the half-space
Green's function is

s )= -a-n(!»l‘; ¢ dé,

1
= smpp 1 Ko(s/B)+ Kolsa® IB)} )
where a* = V(x, - §,)* + (z £ £,)°. To compare this form
for the Green's functions with the forms of the
displacements used in the rest of this discussion it is first
necessary to transform equation (6) from the Laplace
transform domain to the Fourier transform domain.
Applying the change of variables, s = iw, and transforming
the modified Bessel functions, X,, into Hankel functions

gives
'I'—n(x.w;t)=%“' [HP(kga*) + HP(kga™)]. )

This form is analogous with the displacement solution for
the line source in a half-space:

(5, ) =0, ¢, 2)= 3 [H(kpa*) + HP(kpa "))

®
Thus,

G(r, ¢, 2) = — 27ply(x, £) Q)

and the displacement Green'’s function can be calculated in a
manner similar to the displacement solution. The line source
displacements and the line source Green’s functions differ
only by a multiplicative factor of —2xu.

2.2 The propagator matrix technique

To implement the representation theorem integration
coupling algorithm for coupling finite element results into
’ propagator matrix calculations it is first necessary to obtain
and evaluate expressions for the displacement and stress
scismograms and the stress and displacement Green's
functions used in the representation theorem integral
’ (equation 4). Evaluation of dggl!cement and/or stress
Green's functions (T, Ii;,, Inss) is necessary in all
applications of the RT integration coupling method
regardiess of whether the forcing functions are FE results,
analytical stress and displacement seismograms evaluated
using PM or other techniques, or stresses and displacements
from other sources. However, the PM stress seismograms
are used in the following discussions only as an example of a
well-defined and easily evaluated form of forcing functions.
Using s single plane-layered model for all segments of the
path and stress and displacement PM seismograms (i,
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ulz;,, Wit;,) as forcing functions produces RT integration
results (hybrid seismograms) which may be directly
compared with synthetics generated using only a single PM
calculation. Synthetics generated for comparison to hybrid
results by using a single PM calculation will be referred to as
pure propagator matrix seismograms (PPM).

For the SH problem in Cartesian coordinates the
expressions that need to be considered are for I, Ty
I‘n_,. &, 0., and @,. For the geometry (Fig. 2) used to
couple surfaoe waves from a finite element grid into a
layered medium, through which the waves will be
transmitted by convolution with propagator matrix gener-
ated Green's functions only the I5,, I, @, and @; are
used. However, I;,, and 7, will also be derived for
completeness. Should the geometry change so that it would
be necessary to integrate over a horizontal surface such as
the bottom of the grid then I'z, 3 and T, would also be used.

The stresses I‘,, 1s I‘,,_,. G, and T,, can be expressed in
terms of spatial derivatives of displaeements. Evaluating the
numerical derivative gives a reasonable approximation to
the desired stress values. However, a more direct, and more
efficient, method for determining the values of the stresses is
to evaluate the analytical expression for each stress derived
from the corresponding analytical displacement expressions.
The displacement and stress expressions for double-couple
sources, line sources, and line source Green’s functions are

<— Source F

Figare 2. Geometry of FE to PM coupling. The two long horizontal
lincs show the free surface and the boundary between s layer and a
balf-space. The short vertical and borizontal lines show the
boundaries of the finite element grid. The FE grid continues off the
figure to the left. The open circles within the grid and along its
bottom boundary represent nodes in the finite element grid. The
solid circles represent element centres where the forcing functions
uy(t) and 0,,(t) are recorded during the FE calculations. The
integration path of the representation theorem integral, C, is
fllustrated as the closed curve FGHF. The arrows at G and H
indicate that the x, = x coordinate at H and the x, = z component at
G both tend 10 infinity. The large dot within contour G denotes a
receiver. The lines connecting the element centres (filled dots) and
this receiver denote the lkine source Green's functions which
propagate the forcing functions to the receiver. The line FG denotes
the boundary between the ‘complex’ region to its left, and the
‘simpic’ region to its right. The finite element grid extends into the
‘simple’ region to provide oumerical stability.




presented in terms of propagator matrix notation in the
Appendix. The evaluation of these expressions is accompl-
isbed using a generalized version of Harkrider's (1964) PM
codes. The general form of the expressions and the
propagator matrix potation used in the remainder of the
present paper are summarized below.

The basic idea behind the propagator matrix method as
implemented by Harkrider (1964, 1970) is to transmit the
disturbance produced by a source within a layered
half-space structure through that structure by combining
serms that describe the source, the medium response, and
the propagation effects. The terms that apply the effects of
the propagation path in the z direction are in the form of
propagator matrices. For source and receiver both at depth,
they are separated into two parts, the propagation in z from
the source to the surface, and the propagation in z from the
surface to the receiver. An additional propagation term adds
the effect of the propagation in the r coordinate. In most
cases the general form of a modal displacement at a receiver
at depth is

v 0,11 58,[220] [0 a0

where S is a function of the source strength and geometry,
4, represents the medium response for a surface source and
a surface receiver, P expresses the propagation effects in
direction s,

=7,

is the term for transmitting the disturbance from the source
depth to the surface which because of reciprocity can be
expressed as a modal propagator from the surface to the
source depth A, and

[,

is the propagator from the surface to the receiver depth.
The subscript H denotes homogeneous, that is independent
of and not containing & source. The terms within the square
brackets represent matrix quantities, not simple ratios. If
the source is a stress source rather than a displacement
source then

[P_:(_"l
Yo In
is replaced by

&y [0)
#(k) Log/c, Iy
where u(h) is the rigidity at the depth of the source. If stress

rather than displacement is to be recorded at the receiver,
then
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is replaced by
t’(z)
F(z) ”o’cl. M
where z is the deptb of the receiver.

2.3 FE o PM conpling

In the present study, a simple geometry, consisting of the
same layer over a half-space for all segments of the path, is
used as a test case to illustrate the method and assess its
accuracy. The geometry of the simple problem is illustrated
in Fig. 2. The coupling of FE seismograms into a layered
media through which they are transmitted by the PM
sechnique and the application of the representation theorem
is accomplished by direct evaluation of the representation
theorem integral as given in equation (4). The evaluation of
the representation theorem integral on the contour, FGH
(Fig. 2), will be discussed in three parts. First, the quantities
used in the evaluation of the representation theorem
integral on the subsegment FG of the contour, FGH, will be
discussed. Then, the procedure used to estimate the value of
this integral along FG will be explained. Finally, it will be
shown that the contributions to the representation theorem
integral from integration along segments GH and HF of the
contour, FGH, are zero.

Before the particulars of the mtegnt:on procedure can be
discussed, each of the quantities in equation (4) must be
defined. The integration surface for the segment FG is a line
with the x-coordinate beld constant, only the terms
generated by setting k=1 in equation (4) need to be
considered. Thus, the quantities of interest are, 4, u,, 0,,,
I;, and I, ;. The displacement and stress seismograms at
the element centres, illustrated as dots in Fig. 2, are
recorded during the FE calculation. The element centre
displacement u,, and the element centre stress, o,,, are
used as the u, and uu, ; terms, respectively. Line source
Green’s functions are calculated for the transmission of a
unit line displacement, applied at each of the element
centres illustrated as dots in Fig. 2, to the receiver point.
These displacement and stress Green’s functions, calculated
using the PM method, are the I,, and ul,, terms in
equation (4).

The representation theorem integral is evalusted using
trapezoidal rule numerical integration of equation (4) along
segment FG of contour FGH. The displacement and stress
scismograms, and the displacement and stress Green's
functions are time series. The time spacing between
successive points in each time series is the time step
duration, A7, used in the FE calculation. Similarly, the
distance between integration points along the integration
surface is Az, the grid spacing withip the finite element grid.

convolutions. Thus, the products of the Green's funci.ons
and FE results, Ina,, and I;; ,G,, are calculated in the
transform domain, then, inverse Fourier trans-
formed into the time domain and summed. Integration
along the segment FG of the contour, FGH, is
spproximated by numerically integrating along the subseg-
ment FF, of the segment FG, and assuming that the
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contributions to the integral from the remainder of segment
FG are negligible. The assumption that no significant
contribution is made by integration along segment F;G can
be justified for the case where F, is chosen so that the
earliest possible arrival of energy from a source at depth F,
ts later than the last arrival in the seismogram being
considered. The uncertainties introduced when this criterion
is not satisficd will be assessed in the next section. For the
remainder of this discussion we will assume that the depth F,
fllustrated in Fig. 2 satisfies this criterion.

Next, the integration over the remaining two segments of
the contour, C, will be shown to give no contribution to the
representation theorem integral. The segment of the
ocontour FH, along the free surface will be considered first.
The integration surface for the segment FH of the contour,
C, is a line with the z-coordinate held constant. Thus, only
terms gencrated by setting k = 3 in equation (4) need to be
considered. The free surface boundary condition applied on
this surface states that at z =0 the stress, pu, ,, is zero.
Since the Green's function, I, used in all the calculations
also satisfies the free surface BC, the Green's function stress,
ul; 5, is also zero at z =0. Therefore, one term in each
prodict in the integrand of equation (4) is zero, causing the
value of the integral along this portion of the contour, C, to
be zero. Next, the segment GH of the contour, C, will be
considered. As §— = the displacements u, and u, , must
approach zero since the radiation condition is satisfied.
Again, one component of each product in the integrand of
equation (4) is zero. Clearly, this makes the integrand zero
and verifies that the section GH of contour, C, makes no
contribution to the representation theorem integral.

Before summarizing the method one further simplification
in the evaluation of the representation theorem integral will
be presented. The integration of equation (4) along a
vertical surface equivalent to contour FG can be expressed
as

uy(x, )= f u(ENalx, 23 Bu, &g r(Brs &3)

+ I 1(x, 2; &), )y (&1, )y dEs. an

The forcing functions, u,(§,, §,) and p(8:)u;,1(,. &5) = 0.,
can be expressed in terms of the variables used in the PM
method. For the line source this is done by substituting
expressions from the Appendix, eqs (A10) and (Allb),
respectively, for u,(&,, &) and 0,,. The line source Green’s
functions, I, and u(%,)In,, can be expanded in terms of
PM variables by substituting equations (A12) and (A13b)
for I;; and I, ,, respectively. Performing these substitu-
tions, and bringing all terms not dependent on §, out of the
integral, yields equation (12a). For a point double-couple
source the substitutions for the Green functions are
unchanged. For the strike-slip point double-couple source,
equations (A4) and (AB8b) are substituted for u, and o,, to
yield equation (12b). For the dip-slip point double-couple
source equations (AS) and (A9b) are substituted for u, and
o, to yield equation (12¢).

-Cxiu(h)e"."' [u,(h)] [v.(z)] a

« [ )[v.us,)] 28] &, (a20)

Bx, 2) =
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Tz, z)- [Vs(")] [Vk(l)] &

f & )[uk(ér [05(53)] d&, (12b)
0= g 5 L[

f (5’)[0.(53) ,,[%f")]”d&, (1)
where

SH® (k,_r)

\/F 8H 2)("1_')

For all the types of sources discussed in the present paper
both convolutions in the integrand of equation (11) produce
identical expressions. Thus, it should be possible to
accelerate the numerical evaluation of equation (11) by
doubling the result of the integration of either convolution.
This approach makes it unnecessary to record both
displacement and stress seismograms in the FE caiculations.
Either one of these should be sufficient to calculate a 2-D
SH representation theorem integral. This approach also
allows the value of the representation theorem integral to be
determined using half the number of the Green's functions.
The representation theorem integral will be evaluated ty
doubling the value of the first term in equation (11).

In summary, the procedure used to propagate mow.e sum
scismograms along a path that may include one or more
segments of non-planc-layered structure within a longer
plane-layered path will be described below, and, for clarity,
illustrated in the flow diagram in Fig. 3. The details of the
FE to PM coupling technique discussed in this section will
be emphasized in this description (see points (2)-(6) below),
and its relation to the complete hybrid propagation
technique will be demonstrated. The method can be broken
down into eight steps.

(1) Choose a source type, a source depth, h, and a
horizontal propagation distance, 4,, from the source to the
finite element grid edge. This distance A, is slightly less than
the horizontal distance, 4., from the source to the edge of
the first complex region. Also choose Az, the vertical
spacing between nodes in the finite element grid, and n, the
pumber of nodes in a column in the finite element grid. The
quantities n, Az, and 4,, are chosen when designing the
finite element grid containing the complex region (Regan &
Harkrider 1989, Regan 1987). Use the parameter source
type, A, n, A,, and Az, to generate a vertical section of PM
seismograms containing one seismogram at the location of
each node in the first column of the finite element grid. This
set of seismograms will be called the FE forcing functions.

(2) The FE forcing functions are used as displacement
time history constraints on the first column of finite element
podes. This passes the wavefield into the finite element grid
providing a complete solution at every node within the finite
element grid. A vertical section of displacement seismo-
grams is recorded at a column of finite element centres a
borizontal distance, Ape, from the beginning of the finite
element grid. This set of seismograms will be called the RT
forcing functions. 4, + Ay is slightly larger than the

H, = e~ %ut—tn &7y 12eT)
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Figure 3. A flow diagram of the generation of a hybrid synthetic
mode sum seismogram. The numbers in parentheses above some
boxes relate the procedure within that box to a step number in the
summary of the method in the text. To avoid double subscripts in
the figure §= (£, {), and x=(x, 2). As in the text, a bar over a
quantity indicates the Fourier transform of that quantity. The three
small boxes along the bottom of boxes (1), (2), (4), and (5) indicate
a loop. The varniable in the left-most box indicates the incremented
varisble in the loop. The centre box is used to indicate the
sechnique used to calculate the quantity. The right-most box shows
the largest possibie value of the increment variable.

borizontal distance from the source to the end of the region
of complex structure and Apy is chosen when designing the
finite element grid.

(3) Choose the number, j, and locations, (x,z), of
desired receivers. The horizontal distance between a
receiver and A, + Apy is Apy. If the path from A, + A to
the final receiver locations contains another complex region
ampkudeptbmnofhybndumommsneeded
and j=n, and Apy< A, - (A, +4pg). The borizontal
Mnceﬁomthemmtotbeed;eof(henenﬁmte
element grid is 4, .

(4) Calculate h‘ne source stress Green's functions. One
Green's function is calculated to transmit the disturbance at
each element centre to a receiver.

(5) Fourier transform the displacement seismograms in
the set of RT forcing functions.

(6) For each clement centre, multiply the displacement
seismogram from the set of RT forcing functions with the
stress Green's function which transmits that displacement
seismogram to the receiver. Then, add the resulting product
seismograms for all element centres on the depth section
and multiply the resulting sum by 2A:. Inverse Fourier
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transform the result to give the time domain displacement
seismogram at a receiver.

(7) Repeat steps (4)—(6) for each of the j receivers chosen
in (3). If another complex region lies in the path from the
locations of j to the final receivers this repetition will
produce a new set of FE forcing functions. Otherwise the
final solution has been reached.

(8) Repeat steps (2)-(7) to propagate across the next
complex region.

24 Uncertainty estimstes and wodal Sitering for RT
coupling

As stated in Section 2.3, the evaluation of the
representation theorem along path FG (Fig. 2) is in practice,
carried out only along subsegment FF,. The contributions to
the representation theorem integral from integration along
subsegment F,G are assumed to be 2ero. To insure that the
contribution from F,G is zero, the earliest possible arrival
from a source at depth F; must be later than the end of the
hybrid seismogram being calculated. To rigorously apply
this condition, when a seismogram duration of 55s, a
reasonable duration for L, at 4, = 1000 km, is used requires
that F, lic at a depth in excess of 250 km. FE calculations
extending to such depths would be prohibitive. At larger
distances the L, seismogram has even longer durations
requiring the integration surface to extend yet deeper. Thus,
it is desirable to assess the size of the contributions along
subsegment F,G when the depth of F, is considerably
smaller than would ideally be the case, and to determine the
minimum values of the depth F; that will result in acceptable
solutions. Fortunately, it is straightforward to derive a
simple relation expressing the mode by mode accuracy for a
given F,, and grid spacing (Az). This relation can be simply
and rapidly evaluated before RT integration coupling is
attempted. The mode by mode uncertainty estimates can
then be used to assess the effect of a particular choice of F,
Az, and the time spacing on the accuracy of the hybrid
synthetics and to choose optimal values for F, and Az.

To derive the expression for mode by mode integration
sccuracy we return to the expression of the representation
theorem integral along FG in terms of propagator matrix
notation (equation 12). Comparing the quantities outside
the integral, in each equation in (12), with the expression
for displacement due to the corresponding source in a
layered medium, equation (Al0) to equation (12a),
equation (A4) to equation (12b), and equation (AS) to
equation (12c), allows equation (12) to be rewritten as

(X, 1) = us(x,0) ¢ 24, f u(Es )[""(E’)] ["’(5’)] dg,.

(13)
Define 1, t0 be the relation
[ & )[”n(fs)]"[ ”s:fs)]" dt,. (1)
‘This immediately leads to the relation
24,5,=1. s)

Evaluation of this simple equation provides a direct estimate
of the accuracy of the integration on a mode by mode basis.
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The estimate of the accuracy is obtained by evaluating the /,
integrand at each integration point used in the RT
integration, for each frequency on each branch of the
dispersion curve used. For each single frequency mode the
quantity on the left hand side of equation (15) is determined
at each integration point and summed over the integration
surface. If the solution were perfect with no error present,
then the sum would be exactly one. In practice the sum
departs from one by some amount which gives an estimate
of the size of the minimum error that could be expected in
that mode in the RT integration results. The estimate is a
minimum since it does not account for the phase of the
arrivals nor for possible errors in that phase. The evaluation
of the error using this relation is much faster than comparing
results from multiple applications of RT integration
coupling.

An additional result obtained from equation (14) allows a
simple method of modal filtering to be defined. It is well
known that if i and j represent two different modes for a
given period, (k, # k, for w, = w;), then the orthogonality
relation for Love waves states that

[n(z)v,(z)v,(z) dz=0 i#j (16)

Comparing equations (16) and (14), and equating
va(£,)
o[22,

Yo
and

shows that equation (13) is a form of the orthogonality
relation. At this point it is useful to notice that the two

5
H

Yo

terms in the equation (13) each have separate origins. One
originates with the forcing functions and the other with the
Green functions. Thus, any single modes not common to
both the

[

Yo

term from the forcing function and the
[ ”3(53)]
M

Yo

term from the Green's function will produce zero
contribution to the resulting bybrid result. This implies that
the only modes present in both the Green’s functions and
the forcing functions will be present in the RT integration
results. Thus, choosing Green's functions with a subset of
the modes present in the forcing function will produce a
filter that gives RT integration results that contain only that
subset of modes.

3 RT COUPLING OF ANALYTIC
SEISMOGRAMS AND GREEN'S FUNCTIONS

In this section the validity and accuracy of the numerical
implementation of the representation theorem integration
51

coupling technique will be discussed in detail. In the
following discussions a seismogram resulting from a RT
integration will be referred to as a hybrid seismogram.
However, since the representation theorem integral can be
evaluated regardiess of the method used to generate the
forcing functions, easily generated PM forcing functions are
used in most tests of the accuracy of the coupling technique,
rather than more computationally intensive FE forcing
functions. A single test using FE forcing functions is
presented for completeness. All the numerical experiments
discussed below use the same layer over a half-space mode!
for all portions of the path allowing hybrid results to be
directly compared with PPM results. In all cases the layer
has a thickness of 32 km, an SH wave velocity 3.5kms™’,
and a density 2.7gcm™>. The half-space has SH wave
velocity 4.5 km s~ and density 3.4 gcm™>.

In the following sections the results of tests of several
aspects of the representation theorem integration coupling
technique and Green’s function filtering will be presented.
First, the estimation of uncertainties is discussed, and the
values of Az, Ar and F, are chosen. Then, results of the RT
integration for the fundamental mode and for each of the
first five overtones are presented to illustrate where the
discrepancies between the RT resuits and the analytical
results originate. Mode sum results for a line source and for
8 point source are then presented. Modal filtering of FE or
hybrid results is then discussed, and examples of its
efficiency are presented. Before these results can be
discussed the sets of forcing functions and Green's functions
used in the tests need to be explained.

The forcing functions used are the displacement and stress
seismograms for a source depth of 8 km. They are evaluated
at positions corresponding to the element centres of the
right-most column of elements in a FE grid with horizontal
and vertical spacing of 0.5 km, whose right-hand edge lies
4,=1500.25km from the source. Thus, the seismograms
are evaluated at points along a vertical surface 1500 km from
the source, at depth intervals of 0.5km, beginning at a
depth of 0.25 km below the surface. Separate sets of forcing
functions were generated for the fundamental mode and for
each of the first five higher modes. Also, an additional set of
forcing functions was calculated by summing over the
fundamental and the first five higher modes. Single mode
and mode sum forcing functions were determined for both a
line source and a strike-glip point source. Similarly mode
sum and single mode Green'’s functions were evaluated for a
line source at each of the locations where displacement and
stress forcing functions were evaluated for a line source at
each of the locations where displacement and stress forcing
functions were determined and a receiver at the surface.
Single mode and mode sum Green functions for a
propagation distance of Axy =100, and mode sum Green
functions for propagation distances of Agy =50, 100, 150,
250, 500, and 1000 km are used. The representation theorem
integration surface for all RT integration examples extended
to a depth of 50 km.

3.1 Analysis of uncertsinties

Before representation theorem integration calculations are
performed it is useful to consider the choices of Az, the time
step in the displacement and stress seismograms, A,, the
spacing between integration points, and F,, the vertical




extent of the integration surface. Once a desired level of
sccuracy has been defined and the highest frequency to be
modelied bas been chosen & reasonable set of values for
these parameters can be determined. The values of Az and
F, sre selected using the mode by mode estimator of
accuracy discussed in Section 2.4. The tolerated level of
uncertainty, U=1-24,),, in the representation theorem
integrations described in the present paper is 2 per cent. The
translation of this tolerance level to values of Az and F, is
discussed below. The integral [, equation (14), used to
estimate the accuracy of the representation theorem
integration is independent of As. The value of Ar is chosen
80 that 1/2Ar exceeds the highest frequency used in the time
series. In practice it is inadvisable to use a value of Ar which
is larger than hslf the minimum travel time for travelling the
distance Az, since this may cause increased errors at the
shortest periods.

The effects of varying Az were studied. Estimations of
sccufacy were determined for several values of F, and Az,
The resulting values of U were examined to determine the
efiect of changing Az on the value of U. The results of this
examination indicate that U= U,Az, where U, is the
uncertainty using Az =1km. The choice of an acceptable
vajue of Az requires examination of the actual values of U.
Table 1 shows the values of U for a small selection of
periods on each branch of the dispersion curve. The
uncertainty estimation which produced Table 1 used
Az=0.5km, and F,=50km, the values used in the RT
integration tests below. These values of Az and F, produce
errors below U =0.02 for most modes. The pattern of the
variation of U with period seen in this table is typica! of all
the sample combinations of Az and F, examined. The mode
by mode values of U for each separate overtone, and for the
fundamental show that U is small and approximately
constant until the value of F, is reduced to & wvalue
comparable to A, the wavelength for the mode being

Table 1. RT integration uncertainty estimates
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considered. Further reduction of F, causes rapid increases in
the value of U.

The effects of varying F; were also investigated. The
values of U for several values of F, at each value of Az were
reexamined to determine the effect of changing the value of
F, on the value of U. The period below which no uncertainty
estimates exceeded 2 per cent was determined for each F,.
The resulting minimum values of T for each F,, and for
Uy=0.4, and Az = 0.5, are plotted in Fig. 4. The curves in
Fig. 4 are model-dependent and must be determined for
each mode! used. All values of F; below the fundamental

1000

(km)

00

5 0 T(s) 20 30

Figere 4. RT integration uncertainty estimates for Az = 0.5km. F,
is the depth of the deepest integration point on the RT integration
surface in kilometres. T is the period of the mode. Each curve is
labelled to indicate which overtone it refers to. F refers to the
fundamental mode, 1 to the first overtone, etc. Each curve is the
locus of points (T, F;), where T is the maximum period for which a
mode can be accurstely recomstructed (U =0.02) using RT
integration to a depth F,. The borizontal dotted line indicates the
50 km value of F, used in the tests of the RT integration technique.

Period
(s) Fund. st 2nd
500.0000  0.9948
90.0000  0.8456
60.0000  0.6726
30.0000 0.1732
20.0000 0.0234
14.0000  0.0069
11.4000 0.4701
10.0000 0.0124 0.3129
8.0000 0.0135 0.0212
6.0000 0.0142 0.0098
$.7000 0.3940
40000 0.0148 0.0135 0.0091
3.8000 0.0102
2.8000
2.5000 0.0147 0.0136
2.2000
20000 0.0152 0.0149 0.0143
16000 0.0154 0.0151 0.0148
1.2001 0.0154 r.J153 0.0151
0.8001 0.0154 0.0154 0.0154
0.4000 00158 0.0155 0.0155
02000 0.0190 0.0159 0.0161
0.1000 0.0130 1.7330 0.0096
52

Um]- uL’l
3rd 4th 5th
0.3003
0.0093 0.0526
0.0112 0.0046
0.0125 0.0091 0.0047
0.0132 0.0109 0.0056
0.0142 0.0131 0.0112
0.0148 0.0143 0.0136
0.0152 0.0151 0.0148
0.0158 0.0155 0.0154
0.0147 0.0156 0.0161
0.0085 0.0080 0.0078
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mode curve produce uncertainty estimates in excess of
U = 0.02, the specified cut-off level. The values of F; which
fall below the part of a given overtone curve that is not near
vertical produce uncertainty estimates in excess of U = 0.02
for that overtone. The almost vertical portions of the
overtone curves, which have periods near the cut-off
frequency of the overtone, indicate the values of F, that
produce acceptable values of U for all periods. Fig. 4
provides a good way to estimate the minimum acceptable
value of F;. Examining Fig. 4 for a given choice of F, on a
overtone by overtone basis helps to predict and explain the
causes of the inaccuracies noted below in the actual RT
integration results. The value of K, chosen for use in the
tests of the RT integration is 50 km, and is indicated by a
dotted line in Fig. 4. This value is the minimum value of F;
that produces acceptable values of U for the longer period
modes on_the overtone curves. The intersections of the
F, = S0 km line and the curve for each mode indicates the
expected uncertainties. The second through fifth overtones
should be accurately represented at all periods. The first
overtone will introduce somewhat higher uncertainties,
although still acceptable, particularly between 8 and 11s
period. The fundamental mode will be accurate for periods
Jess than about 21 s.

PM
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32 Demonstrating RT imtegration coupling

The first group of tests using the sets of forcing functions
and Green's functions discussed above produced mode by
mode bybrid results directly comparable to PPM synthetic
single mode seismograms. PPM synthetic seismograms were
calculated at A, =1600km for each of the fundamental
mode and the first five overtones. For the fundamental
mode and each of the first five overtones a set of single
mode PM forcing functions, at A, = 1500 km, was combined
with the corresponding single mode set of Green's functions,
for a propagation distance of Apy=100km, according to
the representation theorem integral. This produced a hybrid
seismogram for that mode at A = 1600 km to compare with
the corresponding PPM single mode synthetic. Comparisons
of the RT integration sums and the PPM synthetics for each
individual mode are shown in Fig. 5. All the seismograms
are bandpass filtered for periods between 1 and 25s. The
short period limit on the bandpass filter was chosen to
improve the correspondence between the waveform of the
PPM synthetic and the RT integration result for the same
mode. The short period limit corresponds to the shortest
period energy that can be transmitted through a finite
element grid with grid spacing equal to the spacing of the
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Pigure 8. Mode by mode RT integration results bandpess filtered between 0.04 and 1 Hz. Two columns of seismograms are illustrated. The
first column, labelled PM, shows PPM synthetics for each overtone and for the fundamental mode. The PPM synthetics are calculated for a line
source st a depth of 8km, at a distance A, = 1600 km from the source, using & singie PM calculation. The second cotumn, labelled hybrid,
shows the hybrid synthetics for 8 PM path length of 4, = 1500 km (line source) and a RT integration path length of Axy = 100 km. Each row of
seismograms represeat results for a different overtone. The first row shows the fundamental mode, the second row the first overtooe, the third
row the second overtone, the fourth row the third overtone, the fifth row the fourth overtone, and the sixth row the fifth overtone. Each row of
stismograms is plotted wsing the same scaling. The numbers at the left hand edge of each row indicate the amplitude. The numbers between
each pair of seismograms indicate the rms amplitude ratio of the bybrid seismogram to the PPM seismogram.

53




integration points in the RT integration. The long period
cut-off of the filter is chosen to remove the long period
component of the fundamental mode which cannot be
accurately reconstituted without increasing F,. When the
integration surface is truncated at progressively shallower
depths the long period cut-off of the fiuter must be
progressively reduced to maintain the fit between hybrid and
PPM fundamental mode seismograms. As F; is reduced
below 50km the correspondence between the hybrid and
PPM overtone seismograms for each overtone degenerates.
As predicted in the error analysis the largest discrepancies
between the PPM and hybrid results, for F, = S0km, occur
in the first overtone seismograms. Some discrepancies are
scen in the fundamental mode due to the longer periods
between 21 and 25s which are not removed by the filter.
The higher overtones fit well and approach the accuracy
predictéd by the minimum ervor estimates above.

In practice a full mode sum seismogram is the desired
result of representation theorem integration coupling. The
mode by mode tests discussed above illustrate the validity of
the method and illustrate our understanding of the sources
of possible uncertaintic - 15 illustrate the accuracy obtained
using mode sum forcing functions and Green’s functions the
hybrid synthetic resulting from RT integration using mode
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Figure 7. Mode sum RT integration results. PM seismograms are
calculated for & strike-slip point double-couple source. Other details
as in Fig. 6.

sum forcing functions and Green’s functions is compared with
the corresponding PPM mode sum synthetic. Fig. 6 shows
results using a line source, and Fig. 7 shows results using a
point source. The agreement in amplitude and waveform
between the PPM and hybrid mode sum results is excellent.
The sum of modes synthetic calculated as a sum over the
single mode hybrid results shown in Fig. § gives a similar
result. The agreement between the mode sum hybrid
scismogram and the sum of single modes hybrid seismogram
provides an independent check and the validity of the
filtering technique, since any cross-terms that did not cancel
due to orthogonality would appear as deviations between
the two sets of resulting seismograms. That is, cross-terms
present in the mode sum result would not be present in the
sum of modes resuit.

3.3 Demosstration of Greea's function Sitering

Next, a series of calculations investigating the accuracy and
efficiency of the Green’s function filtering technique will be
discussed. The Green’s function filtering method uses
Green's functions, containing only a subset of the modes
present in the forcing functions, as a filter to extract only
those modes from the forcing functions. In particular, the
single mode sets of Green's functions are used in the
representation theorem integral along with the mode sum
set of forcing functions. The resulting hybrid seismograms
contain energy only in the single mode present in the
Green's function. A representation theorem integration was
performed using each single mode set of Green’s functions
and the set of mode sum forcing functions. As an example
results using the third higher mode Green'’s functions and a
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Figure 8. Green's function filtering using the third overtone as an example. All illustrated scismograms are bandpass filtered between 0.04 and
1 Hz. The results of a different RT integration are presented in each column. Both columns show hybrid seismograms for a line source at a
depth of 8 km and a distance 4, + Ay = 1600 km from the source. In both cases the PM path length is 4, = 1500 km, and the RT integration
peth length is Apy=100km. In the first column, labelled mode » mode, the hybrid seismograms are derived using the third overtone forcing
functions and the third overtone Green's functions. In the second column, labelled mode sum » mode, the hybrid seismograms are derived
wsing the mode sum forcing functions and the third overtone Green's functions. Each pair of seismograms is plotted using the same scale, but
the acale changes from pair 10 pair. The amplitude is indicated at the left end of each pair of scismograms. The RT integration begins at the
surface and proceeds down FF, (Fig. 2) to F,. The first row of seismograms is a single convolution, the sum down to a depth of 0.25 km. The
second row is the sum of 21 convolutions, and includes all integration points to a depth of 10 km. This pattern continues with the depth of the
deepest point included in the integration indicated to the right of each pair of seismograms. The aumbers between the pairs of seismograms
indicate the rms amplitude ratios of the mode sum ¢ mode seismograms 1o the mode ¢ mode seismograms.

line source are shown in Fig. 8. When a depth of F, = 50 km depths greater than 50 km improves the results slightly due
is reached the waveforms are indistinguishable and the to better fits at longer periods. For the fundamental mode
amplitudes agree to within less than 1 percent. Studying increasing F; allows longer period energy to be modelled.
similar plots for each overtone and for the fundamental Fig. 9 illustrates the mode by mode results of the RT
mode shows several trends that hold for both point sources integrations discussed above for F,=50km. For the
and line sources. In general the integrztion must proceed to fundamental mode and all illustrated overtones the
, a depth F; of about 0 km before the waveforms of the waveforms of the mode * mode hybrid results and the mode
filtered mode sum seismograms ciosely resembie those of sum*mode results are essentially identical. The mms
the single mode hybrid results. For the third to fifth amplitude ratio of the two different types of hybrid result is
overtones the filtered results at F, = 50 km and the analytical one for each pair of seismograms shown. In fact even the
results agree in amplitude (ms amplitude differ by peak-to-peak amplitudes agree to within less than 1 per cent
<1percent) and are not visibly different in waveform. for all modes. Clearly the Green's function filtering technique
Integration over the full 50 km is necessary to stabilize the is accurate and promises to be very useful in the
results. Integration to depths greater than 50 km does not interpretatior: of bybrid seismograms for paths including
improve the correspondence between hybrid and filtered complex structures. In summary, the effect of using a set of
results. For the first and second overtones integration to Green's functions containing a subset of the modes present
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Figwre 9. Mode by mode results of Greea's function filtering. All seismograms are bandpass filtered between 0.04 and 1 Hz. The first row
shows results for the fundamental mode, each successive row shows resuits for the next higher overtone. The results of a different RT
imtegration are presented in each column. Both columns show hybrid seismograms for a line source at a depth of 8km and a distance
A, + gy = 1600 km from the source. In both cases the PM path length is A, = 1500 km, and the RT integration path leagth is Apy = 100 km.
In the first column, labelied mode » mode, the bybrid seismograms are derived wsing the single mode forcing functions and the single mode
Green's functions for that same mode. In the second column, lsbelled mode sum » mode, the hybrid seismograms are derived using the mode
sam forcing functions and the single mode Green's functions. The extent of the integration surface, K, is 50 km for all ithustrated seismograms.
The amplitude scale is given to the left of each pair of seismograms. The rms amplitude ratios of the mode sum » mode seismograms o the
mode ¢ mode seismograms is one in all cases and is thus not illustrated on the diagram.

in the set of forcing functions is to produce an efficient filter
that allows only the modes common to both sets to appear
in the hybrid result.

34 KT integrstion coupling and Green’s fanction
fltering using FE forcing functions

The exampies of representation theorem integration
coupling discuseed to this point demonstrate the validity of
coupling a wavefield expressed in terms of displacement
ssismograms, generated wsing the PM method, recorded at
equal imtervals along a wvertical boundary, across that
boundary. The wavefield is coupled across the boundary by
RT , ovaluation of equation (4) along that
wvertical surface, of the displacement and the
appropriate line source Green's functions. It remains to be
shown that RT integration coupling and Green’s function
filtering are valid when FE or FD displacement seismograms
are weed, and that the entire sequence of operations used to
iaclude a complex subeegment of s propagation path in that
path is valid. The final example of RT coupling, presented
in this section, addresses these questions.
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RT coupling produces hybrid
propagation of energy from a
section of its path using the PM
section of its path using the FE
finally, through the last section of the path
using RT integration coupling. Again, for this example, the
cuntire path comsists of a single simple plane-layered
direct comparison of the hybrid results to
A otrike-glip double-couple point source at
s depth of 8km was wsed (o generate a set of PM

history constraint on a grid point along the left-hano edge of
a finite element grid with grid specing 0.5km. The

i of this set of displacement time history
constraints to the end of the finite element grid completely
motion of all nodes within the finite element

the finite olement grid displacement seismo-
during the FE cakculation. The
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displacement seismograms were recorded at column 101, a
distance 4, + Ape = 1550km from the source. These
displacement seismograms were then used as forcing
functions in a representation theorem integration. The
distance propagated using representation theorem integra-
tion varied from 50 to 1000 km.

The results of the example described in the previous
paragraph ar: iljustrated in Fig. 10. The correspondence
between the bybrid seismograms and the PPM seismograms
is excellent. As the distance propagated using RT
integration coupling increases the PPM seismograms appear
to decay in amplitude faster than the hybrid seismograms
despite the fact that the rms amplitude ratios remain
relatively constant. This is an antefact of the fact that the
rms amplitude ratio has the decay correction VE,/x from
equation (12) included in it but the plotted seismograms are
pot scaled by the correction factor. This allows one to see
the increasing importance of the 2-D to 3-D propagation
correction as the portion of the path traversed using the 2-D
finite elerent and representation theorem integration

PM

3400‘ p 1.05
-3400

34007 t 1.04
-3400

34007 1.05
NS I O
34007 ﬂ 1.04
—34004

34007 ! 1.04

-3400.

L

coupling techniques increases with respect to the portion of
the path traversed wusing the 3-D propagator matrix
propagation. The origin time of each seismogram in Fig. 10
is slightly different. When absolute times are considered the
first peaks in each pair of seismograms align exactly.

Next, this example will be extended to present the results
of & Green’s function modal filtering of one of the hybrid
scismograms in Fig. 10. The bybrid seismogram propagated
Agpr=100km using representation theorem integration is
chosen for this analysis so that the single mode Green's
functions already calculated can be used in the modal
filtering analysis. The location at which this seismogram is
recorded will be referred to as A. Since a single layer over a
hali-space structure is used for the entire path it is simple to
predict that the transmission coefficients across the
‘complex’ region within the finite element grid should all be
one and that the reflection coefficients should all be zero.
Thus, the hybrid single mode seismograms recorded at A
should be identical to the single mode PPM seismograms for
a propagation path length of 4, =1650km. Fig. 11 shows

HYBRID
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7] ﬁ 100
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F 250

300
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-3400
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0
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Pigure 10. Mode sum RT results using FE forcing functions. All seistnograms are bendpass filtered between 0.04 and 1 Hz. The first column
show PPM results for cach case, the second column shows the corresponding hybrid results. Each row illustrates results for a different
propagation distance. For all hybrid seismograms the initial PM propagation distance from the source 10 the @nite element grid edge is
4, = 1500km, and the propagation distance withip the grid is Apy = S0km. The distance, in kilometres, propegated using RT integration
coupling, Ay, is indicated to the right of each pair. The rms amplitude ratios of the hybrid results to the PPM results are shown between each
pair of seismograms. Origin times of the plotted seismograms are arbitrary. Arrows below each seismogram indicate the arrival times.
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Pigure 11. Example of Green's function filtering of bybrid synthetics. The hybrid seismogram for receiver A, with A, = 1500 km source to FE
distance, App = 50 km FE propagation distance, and Ay = 100 km RT integration coupling propagation distance, shown in row 2 of Fig. 10 is
analysed using mode by mode filtering. In the left-most column PPM seismograms for each single mode at receiver A are itlustrated. In the
right-most column bybrid filtered seismograms calculated using RT integration with the time series (A, ) recorded during the FE calculations
as forcing functions and the single mode Green's functions for Ay = 100 km propagation are illustrated. The bybrid to PPM seismogram rms
smplitude ratios are illustrated between each pair of seismograms. Amplitudes are shown to the left of each pair of seismograms.

mode by mode results which verify this. The hybrid single
mode seismograms illustrated in Fig. 11 are calculated using
the FE displacements, which contsin modes on the
fundamental and first five overtone branches, as forcing
functions and single mode Green's functions.

For a real case the complex region within the fnite
element grid would produce mode to mode conversions and
conversions to body waves which would cause non-unitary
transmission coefficients and non-zero reflection coefficients.
A modal analysis of a bydbrid mode sum seismogram would
require the calculation of the reflection and transmission
coeflicients for each mode. To determine the transmission
ooefficient the ratio of the bybrid scismogram to the PPM
seismogram would be taken at a point which the wavetront
reaches after propagating through the complex region. To
determine the reflection coefficient the ratio of the energy in
the seismogram resulting when the hybrid and PPM
scismograms are differenced and the energy in the PPM
scismogram would be taken at a point which the incident
wavefront reaches before propegating through the complex
region.

58

4 CONCLUSIONS

In this paper 3 method for propagating a mode sum
wavefield through a long path containing short segments
which include complex regions is presented. The wavefield is
produced by a point double-couple or line source and is
propagated from that source through a plane-layered
medium to the edge of a mixed region using the propagator
matrix method (PM). The mixed region must contain the
complex region and small sections of the layered structures
adjoining each end of the complex region. The wavefield is
the boundary between the plane-layered
ion using the technique discussed
(1989). The wavefield is then
mixed region using the finite
) method After propagation through the mixed
is sampled at each node along a
ace must lie in the plane-layered
the wavefield reaches after it bas propagated
region. The resulting seismograms are
wed as forcing functions in the representation theorem

1
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integral which propagates the wavefield from the edge of the
mixed region through the remainder of the second plane
layered region.

In this paper the mathematical implementation of the
representation theorem integration coupling method is
developed and tested. A method of estimating the accuracy
of the technique, based on the orthogonality of Love waves,
is presented. Finally, the Green's function filtering technique
for modal analysis of FE or hybrid results is derived and
illustrated. A simple model which consists of a layer over a
balf-space is used for all sections of the propagation path in
all tests described in this paper. This simple model aliows
the hybrid seismograms to be directly compared with
scismograms generated using a single application of the
propagator matrix method for the entire path (PPM). The
agreement between hybrid seismograms and PPM seismo-
grams for examples illustrated in this paper demonstrates
the wvalidity of the representation theorem integration
coupling method. It shows that the method can produce
hybrid synthetic seismograms of high accuracy. Evaluation
of a simple expression derived from the expressions for the
hybrid seismograms in propagator matrix notation and the
corresponding expression of the orthogonality relation for
Love waves allows one to evaluate the expected uncertainty
for any single mode contribution to the hybrid seismogram.
Evaluation of the uncertainty for each single frequency
mode included in a mode sum seismogram has been
demonstrated to be a good indicator of the sources of
uncertainties in hybrid seismograms. The modal uncer-
tainties bave also been shown to provide an easily evaluated
predictor of the vertical extent of the integration surface,
and the minimum spacing between evaluation points on that
surface, needed to provide a given level of accuracy. Results
presented in this paper indicate that the Green's function
filtering method provides accurate hybrid seismograms
containing only those modes present in both the
representation theorem integration forcing functions and the
Green's functions used as a filter. Thus, single mode
Green’s functions yield hybrid results containing only a
single mode.
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APPENDIX A

In this appendix the expression for SH displacement and
stress at a receiver at depth z due to a source at depth h are
presented in terms of Harkrider's (1964) propagator matrix
notation. First strike-slip and dip-slip double-couple sources
are considered, then line source results are given. Finally,
fine source Green function displacements and stresses are
developed.

The displacement for an arbitrary double-couple source
follows directly from the expression for the SH displacement
at depth z produced by a double-couple source of arbitrary
orientation at depth h (Harkrider 1964, 1970).

[v(r, 6. 2, @) = zm'x.kgu.gL{(cos Asin 6 cos 2¢

~ sin %‘—ssin 2¢)["sv(:)]H BH?;(rku)

~ (sin A 005 28 cos ¢ + cos A cos & sin @)

x( (l;.) [T:j”’] ) BH?’(kLr)}[v,(z)]
M Vo/Cdm »H

or Vo
(A1)
where
= M(w) iM, .
Kog= Anpw’ 4npw’ Vo™= iwv, (A2)
.-9— pw k=2 peir (A3)

BFrum) e
In equations (A1)-(A3), 4 is the strike of the double-couple
source, & is the dip, ¢ is the azimuth to the station, B is the
SH wave velcoity, p, is the density at the depth of the
source, A is the source depth, w is the frequency, r is the
distance from the source to the receiver, ¢, is the Love wave
velocity, u(h) and u(z) are respectively the rigidity at the
source depth and at the receiver depth,

us(h) (k)
[ Vo JIn and [i’o/CL M

are the terms that transmit the source disturbance in the z
direction from the source to the surface,

[”n(l)]
Vo Jn
is the term that transmits the disruption in z from the
surface to the receiver, and the term containing the Hankel
function is the propagation term in the r direction. The
source term is defined to contain all the angular dependence
on 8, A, and ¢, as well as the term 2ixk3uK . The second
equality in the first of equation (A2) assumes a
step moment, that is M(w) = M,/iw.

It is well known that a doublecouple of arbitrary
orientation can be expressed in terms of a linear

Seismic representation theorem coupling

combination of double-couple sources of three types,
vertical strike-slip (6 =90°, and A=0°), vertical dip-slip
(6 = 90° and A = 90°), and 45° dip-slip (6 = 45° and A = 90°).
Thus, results for these three fault types can be added to
produce results for an arbitrary orientation, removing the
necessity to repeat the entire procedure for each orientation
to be studied. In fact, for SH waves, any fault geometry can
be modelied using a linear combination of only the vertical
dip-slip and the vertical strike-slip faults. Evaluating
equation (A1) for each of these two fault types, yields the
expressions used to determine displacement seismograms at
a receiver at depth z due to a vertical strike-slip fault at
depth h

Mo 3”“’(":.') vs(h)] [va(2)
to¢r, )} = -Z_w [ ]n[ Yo

and due to a vertical dip-slip fault at depth A.

M 1 3”“’("1_’) (k)] [va(2)
toc, ')]"'z A“p(k) [vo/c,_] [ Yo ]H'

], @o

(A5)

The analytical expressions for the stress components for
SH waves from a point double-couple source follow directly
from these expressions. Only the final term in equations
(A4) and (AS) depend directly on z. From Harkrider (1964)

["R(Z)] . f‘(z)]
E73 NP PRTES) N
All terms in equations (A4) and (AS) except the Hankel
function are constant with respect to x. By expanding the
Hankel function term in an asymptotic series for large 7, and
ignoring terms of order 1/r, it can be shown that

(A6)

3 (BHP(kyr)y _ . BHP(kyr)
‘a_r( or ) ik, ar (A7)

Thus, taking the appropriate derivatives of the displacement
expressions yields the expressions used to determine stress
time histories at a receiver at depth z due to a vertical
strike-slip fault at depth A

M, , SHP )k r) [us(h)] [°/(2)
(@, z)]-k"z_wd" zar - [ Yo H[ 0o/CL]H
(A8a)
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and due to a vertical dip-slip fault at depth A.
M, 1 BH(”(k,_r) ' (h)] [7°(2)
W—(' 2= k"z 4 H(h) "o/CL] [‘)O/CL]H
(A9a)
_al}‘(l)_bio 8Hm(k,_r) *(h)] [ua(z)
(o (r. 2)] u(h) Tt [uo/c._] [ vo
(A9b)

The analytical expressions for stress due to a line source
in a layered medium are found by a procedure similar to
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that used above to obtain the stress expressions for the point
double-couple source. The displacement at depth z due to a
line source at depth h is

e u(h) [us(h)] [va(2) ~dkyx
(6o, ) = 2mig, B[22 1] [222)] emuer

(A10)

Therefore, the stresses for the 2-D line source are

e, )= ~2ein(ira, [ 23] [Z1] ene anna)

Vo Vo/e In

[, ) = 2mu(hucaa, [ 2] [25D)) e
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(A11b)

Applying the same treatment to the expression for the
displacement Green's function for a line source in a layered
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half-space,
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gives expressions for F,; and I3, ,. In this case a stress
source term rather than a stress receiver term is needed.
Thus, the depth derivative is taken with respect to the
source term. The form of the depth derivative is identical to
that in equation (A6) except that z is replaced by A.
Therefore the derivatives of the Green's function are

(-fzz—.:(x. Z; 51» )]
s [f (Es)]”[”k(z)

e~ 4=t (A13a)
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SECTION 4

On Modeling Explosions using 2-D Numerical Methods
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Richard J. Stead, John E. Vidale and Donald V. Helmberger
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ABSTRACT

Although seismic structures are generally three-dimensional (3-D), numerical
simulation of wave propagation through laterally heterogeneous media is concep-
tually simpler and less computationally intenmsive in two dimensions (2-D).
Source expressions for 2-D that have the same radiation patterns as their 3-D
counterparts have been derived which can also correct for the differences between
2-D and 3-D wave propagation (Vidale and Helmberger, 1986; Stead and Helm-
berger, 1988; Helmberger and Vidale, 1988). Because that technique approxi-
mately transforms waves from a cartesian 2-D grid to a cylindrically symmetric
3-D world, slightly anisotropic geometrical spreading in 2-D better approximates
isotropic spreading in 3-D than simple isotropic spreading in 2-D does. This
paper describes a correction to the explosive source expression which reduces
energy traveling vertically out of the source region, but leaves unchanged the
energy traveling laterally out of the source region. We show that this correction
will significantly improve the results of using a 2-D grid to simulate elastic wave
propagation from an explosive point source.

The eflect of shallow station structure and lateral velocity variation are
investigated for records of the Amchitka blasts MILROW and CANNIKIN. The
differences between the Meuller-Murphy, Helmberger-Hadley, and von Seggern-
Blandford reduced displacement potential (RDP) source representations are
smaller than the differences produced by various possible velocity structures.
Using a model basad on known structure, s better fit is obtained for the records
of MILROW, primarily for the surface waves. In addition, a technmique is
developed to include possible source asphericity. Using this technique, the
Amchitka blasts, especially CANNIKIN, show evidence of significant aspherical
cavity formation.
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INTRODUCTION

Ideally, one would like to simulate wave propagation in the earth with 3-D
numerical grids. Such experiments are, in fact, now being attempted (Stevens
and Day, 1085, Reshef, et al., 1088a, Reshef, et al., 1088b). They require, how-
ever, very large amounts of computer time and allow energy to propagate only a
limited number of wavelengths, so that they do not apply to many problems of
geophysical interest (see, for example, Figure 13.11 of Aki and Richards, 1977, for
the range of application of various methods). Numerical grids in 2-D have been
u;ed for many years to provide insight into 3-D wave propagation problems (see
Boore, 1972, for example). Recently, we have developed source expressions which
allow the simulation of point slip dislocations and explosions with 2-D numerical
grids (Vidale et al., 1985; Vidale and Helmberger, 1986; Stead and Helmberger,
1988; Helmberger and Vidale, 1088). These expressions are applied to a fourth-
order explicit FD method. We find this method to be accurate, flexible and more
efficient numerically than implicit FD or pseudo-spectral methods (pseudo-
spectral methods are discussed by Reshef, et al., 1988a and Reshef, et al., 1088b,
among others). The source formulations are most accurate for energy that pro-
pagates horizontally away from the source, partly because the asymptotic solu-
tion is most accurate for large range, high frequency, and non-vertical take-off -
angle (Vidale and Helmberger, 1986), but also because a 2-D grid does not prop-
erly simulate 3-D geometrical spreading. We describe herein a source term that

corrects for the improper geometrical spreading at most take-off angles.

We then demonstrate the use of this refinement by calculating finite
difference synthetics for the Amchitka Island, Alaska blasts MILROW and CAN-
NIKIN. The LONGSHOT blast is not considered due to the lack of near-field
data. These blasts have been studied extensively by other researchers (Lay, Bur-
dick and Helmberger, 1084, Lay, Helmberger and Harkrider, 1084, Burdick, et al.,
1984, King, et al., 1974, Perret, 1072 and Toksoz and Kehrer, 1072, among many
others). In this research, because the structure and the source time functions

have been investigated, these blasts are a good demonstration case.

64




The blasts are described in detail by Perret (1072). MILROW was detonated
October 2, 1969 at a depth of 1219 m. Its yield was approximately 1 Mt. CAN-
NIKIN was detonated November 6, 1971 at a depth of 1761 m with a yield not
more than 5 Mt. Both shot points were in pillow lavas beneath a varied sequence

of volcanic breccias, basalts and sediments.

These events, because of their size, location and the wealth of data that was
released at the time, provided seismologists a unique opportunity to study a
broad range of seismological properties of nuclear explosions (Willis, et al., 1972
and Engdahl, 1972, among others). In this paper, we will be concerned with the
near-field seismic records of these blasts. The modeling of these records has been
the subject of several other studies, most notably Burdick, et al. (1984) and Lay,
Burdick and Helmberger (1984), where the researchers simultaneously model the
pear-field and teleseismic data. Here, we will take the source parameters and
seismic structure from these studies as known, to demonstrate the effects of some
modeling procedures made possible using finite difference (FD) wave propagation.
We will not address the close-in records of the Sandia Laboratories experiments
(Perret, 1973; Perret and Breding, 1972) because our FD algorithm does not
account for the spall observed in those records. We use FD in this research to
demonstrate the limitations of one-dimensional (1-D) modeling and to explore the -
effects that realistic 2-D structures can have when superimposed on a good 1-D
model.

DIFFERENCE BETWEEN 2-D AND 8-D WAVE PROPAGATION

The equations for 2-D and 3-D wave propagation are similar, but there are
important differences. We will examine the acoustic case, although the same
arguments hold for the elastic case. In the acoustic case, the 2-D wave equation

for homogeneous media is
Pu-cz P"+P”): (l)

where P is pressure, ¢ is the wave velocity, £ and z are cartesian coordinates,
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and subscripts indicate derivatives. The 3-D acoustic wave equation for homo-

geneous media is
Py = c? (P, + P" + P, ). (2)

where y is the third cartesian coordinate. Cylindrical co-ordinates are also
appropriate for wave propagation near a horizonta! free surface. In cylindrical

coordinates
P,
Py = c? (P, + P,; + —;-), (3)

where r and z are the radial and vertical coordinates, and azimuthal symmetry
in the wavefield is assumed. The term that is multiplied by 1/r becomes negligi-
ble as r becomes large, and in this case the Equations (1) and (3) are nearly

equivalent.

There are several differences between waves propagating according to Equa-
tions (1) and (3). In 2-D, wave amplitude decays with geometrical spreading by
1/VR , where R = m, but in 3-D, wave amplitude decays by 1/R,
where R = m This difference can be corrected by multiplying the
amplitude of seismograms produced with Equation (1) by 1/VR , but this correc-
tion is exact only for a homogeneous media. If the true raypath is strongly bent -
by v:'ocity gradients, the appropriate R may be difficult to find. If there are
several raypaths between the source and receiver, the appropriate R is ambigu-

ous and impossible to find.

In 2-D, an impulsive burst of energy at the source results in an impulsive
burst of energy at the receiver followed by a line source tail which decays as
1/ Vvt , where ¢t is the time after the first arrival of energy at the receiver. In 3-
D, an impulsive burst of energy at the source results solely in an impulsive burst
of energy at the receiver. The arrivals with a line source tail that result from the
use of a 2-D numerical grid can be restored to point-source-like impulsiveness by
convolution with the time series H(t) /vt , followed by differentiation with
respect to time. Here H(t) is the Heaviside step function. The seismograms
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produced are approximately those that would result from a source on the axis of
symmetry in a cylindrically symmetric medium.

The corrections above have been suggested in Vidale et al. (1985) and Vidale
and Helmberger (1986), but a further correction has been derived in Stead and
Helmberger (1888) to approximate the anisotropy in geometrical spreading neces-
sary to exactly simulate 3-D wave propagation in a 2-D numerical grid. Below,

we provide physical insight into this correction.

CORRECTION FACTOR FOR EXPLOSIONS IN 2-D

We will show that the amount of energy leaving the source region at an
angle 1+ with the vertical in the 2-D grid may be approximated by the amount of
energy in the point source case multiplied by Vsin s . The additional Vsin ¢ in
the point source or 3-D solution can be explained in terms of geometrical spread-
ing, as is shown in Figure 1. The energy between takeoff angles iy and ¢ + di,

for the point source becomes

(2rsindyr)r diy

Ep = Py = sin 14 di, 4)
while for the line-source
2x r diy )
B = —m = di (8)

Since energy is proportional to the square of the amplitude we obtain the vsin ¢

dependence.

If we use an isotropic explosion as the source in the 2-D model, each arrival
in a record may have a different take-off angle ¢, but we can only correct for a
constant vain s . The result is that the vertically traveling energy is emphasized
over horizontally traveling energy in the line source compared to the point source
case. One might ask why not simply multiply the isotropic source by Vsin ¢ .
Unfortunately, such s source does not satisfy the 2-D elastic wave equation and

will not maintain the vsin 1 radiation pattern once the energy leaves the source
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region, primarily because the cusp in the vain s at § == 0° does not satisfy the
2-D elastic wave equation.

The source functions found to be solutions to the 2-D elastic wave equation
have radiation patterns of sin®s cos™ s, where n and m are free parameters.
An isotropic line source explosion, for example, is the solution with n = m =0,
and the dislocation sources have n + m == 2 (Vidale and Helmberger, 1086;
Helmberger and Vidale, 1088). Also, because of the asymptotic nature of our solu-
tions, the compressional and shear parts of the source separate. The 2-D to 3-D
correction we adopt is to add the compressional component of the horizontally-
directed force term (n =1 and m == 0) to the isotropic explosive source. This
term is added so that it decreases the amplitude of energy leaving the source
vertically, but Jeaves unchanged the amplitude of energy leaving the source hor-

izontally.

These two terms can be thought of as the first two terms of a Taylor series
expansion of Vsin s about the point § == 90°. Higher order corrections could be
added, but we choose not to, for the following reasons. The first two terms alone
provide a sufliciently accurate solution, but when n or m is increased by 1 the
pseudo-pear-field terms in the solution grow more prominent by a factor of ¢,
that is, the asymptoti;: solution diverges by another factor of ¢t. An isotropic
line-source explosion has a constant pseudo-near-field term, which is analogous to
an explosion in a 3-D medium, where there may be some permanent deformation
near the source. The compressional component of force described below grows
with time as ¢, and slip dislocation sources grow with time as ¢2 (see Vidale and
Helmberger, 1086). Therefore, while the addition of higher-order terms in the
Taylor series would make the source radiation pstiern more closely resemble
Vsin ¢ , it would also add more severe pseudo-near-field terms to the displace-
ment field in the finite difference grid.

The following solutions for a delta function source in a whole-space (see
Stead and Helmberger, 1088). Define

68




R?

TC - tg ag (6)
and
o, = V2 H(t-R [a) 1 ™

Vo -T, =R?

where a is compressional wave velocity, R is the absolute distance between the
source and receiver, and ¢ is time. The analytic whole-space expressions for an
isotropic explosion, that may be used as internal boundary conditions surround-
lﬁg a source in a 2-D numerical grid, are

Qg =r &, and

Wg =2 &,, (8)
where r Is the horizontal component of R, and is positive in the direction of the
receiver, and z is the vertical component of R, and is positive downward. Qg

and Wg are the radial and vertical components of displacement.

The expressions for Qr and Wy for a line-force, which has a sin ¢ radiation
pattern are
al & (p2_ 42 2) and
Q,F-F a(r®-2°4+ T, 2% an

()
We =%¢a(-2n+7‘°r:).

Taken together, allowing for arbitrary combination of the terms using the param-

eter k, (force ratio), the result is

(8) = efa-tn[7) +ur 2 '(’;:’f;)”,';]] o

The time function appropriate for an explosion, the RDP, is included by convolu-
tion after propagating the source, @ and W, through the FD grid and extracting
the response, Q and W, at the desired receiver. Thus, the complete expression

for the line source synthetic is
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w) =L (3] erea, )

where W(t) = ¥ (1-¢X )1+ Kt +...), and ¥, has units of volume. The func-
tion I is the instrument response, and the function A is the attenuation operator.

This is similar to the moment release expression In Vidale and Helmberger (1986)

Q) _ 1010 AM(t) (@
W) =gt W) s 1ea

where M is the earthquake moment and p is the density.

(12)

By judiciously mixing the explosive and force terms (varying k;), we can
modify the vertical radiation pattern of the explosion to better mimic vsin ¢ in
the range we desire. Figure 2 shows the radiation patterns that result from using
k, =0, k, = 0.5 and k, == 0.8. These cases are compared with vsin ¢+ and
isotropic line source radiation patterns. Energy that leaves the source at angles
near s == 90° is not aflected by the correction, but energy at angles near ¢ = 0°
is markedly affected. The mix of explosion and line-force expressions determines
where in the radiation pattern the source is most accurate. As seen in Figure 2,
k; = 0.5 is most accurate near ¢ == 90° while k; == 0.6 is less accurate near
¢ = 00° but more accurate near § = 30° It is clear from Figure 2 that only
energy leaving the source at positive angles may be modeled with this corrected

source.

As described in Stead and Helmberger (1988), the line source seismograms

are transformed into point source seismograms by:

W)=-m7 sl W) (1)

where Q and W,, are borizontal and vertical displacements in em.

This correction factor will change the relative amplitude of arrivals by the
Vsin ¢ factor shown in Figure 2. The effect of a k; = 0.5 correction for an

explosion in a half-space is shown in Figure 8. The corrected FD seismograms
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bave Rayleigh waves of larger amplitude relative to the direct compressional
waves than do the uncorrected seismograms, and they agree better witk the
seismograms generated by the Cagnaird method, which is known to be accurate
(see Apsel and Luco, 1983, for example). The Vsin s corresponds to Vp , where
the real part of the horizontal slowness p is p == rt / R2 The correction
increases the size of the Rayleigh waves because they have a greater horizontal
slowness than the direct compressional waves. The correction becomes more
important the more nearly vertically the energy is traveling. In modeling short-
period P waves from the Nevada test site, Stead and Helmberger (1988) have

found this correction to be crucial.

APPLICATION TO AN EXPLOSION ON AMCHITKA

We now use the corrected source to investigate the records of explosions on
Amchitka Island, which is among the Rat Islands group of the Aleutian Islands in
the Pacific ocean. As discussed above, the models in Burdick, et al. (1984), Lay,
Burdick and Helmberger (1984) and Lay, Helmberger and Harkrider (1¥84) are
taken here as the best 1-D approximations. Burdick, et al. (1084) show that the
records from the explosion MILROW for the stations shown in Figure 4 can be
modeled fairly well with a layered structure. The P-wave crustal model in Table
2 consists of 8 of the 9 layers derived by Burdick, et al. (1084) by fine-tuning the
model proposed by Engdsahl (1972). This model predicted the observed P-wave
travel times well, and the S-wave velocity structure was added in that investiga-
tion to model the Rayleigh wave arrivals. A comparison of synthetics generated
by various methods including FD and assuming the flat-layered 3urdick model is
discussed in Vidale and Helmberger (1088). We will be interested primarily in
perturbations of this flat-layered structure and the corresponding effects on the

resulting waveforms.

Geologic constraints on the structure are obtained from a report by Orphal
et al. (1970) which displays geologic cross-sections from the blast to the various

stations. Density, shear wave velocity and compressional wave velocity for the
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Amchitka sites can be obtained from well-log information, Perret (1973) and Per-
ret and Breding (1972). Figures 5a through 5c¢ show the S-velocity, P-velocity
and density profiles chosen as models of the Amchitka structure. These models
are tested below to evaluate the relative importance of various features in the

available information about Amchitka structure.

The first experiment tests the effect of smoothing the layer boundaries. This
is accomplished by specifying a gradient region which straddles the original sharp
layer boundary (see Table 3). The results of these trials are shown in Figure 6.
In this figure, the synthetics for both the sharp layer boundaries and gradient
boundaries are compared at two ranges for the events CANNIKIN and MIL-
ROW. The RDP source time function used is that of Helmberger and Hadley
(1981)

V(t) = V¥, [1 - e Xt (14Kt +050Kt)?-BKt)) ] (14)

The source for MILROW has K=6, B=1 and ¥ =10, and the source for
CANNIKIN bas K=9, B=0.625 snd ¥, =5.69X10'), both as determined by
Lay, Helmberger and Harkrider (1984). The most obvious effect is a change in
frequency content. This is to be expected; a gradient zone appears 'sharper’ to
low-frequency energy than to higher-frequency energy. In fact, the gradients used
in this case are more effective in turning long period energy than sharp boun-
daries, as shown by the larger Rayleigh waves for the CANNIKIN synthetics.
Another effect is that individual reflected phases, and multiples in particular, are
pot large and impulsive in the gradient case. This effect is particularly evident
for a phase about 7 seconds after the first arrival on the radial component of the
CANNIKIN synthetics at 20 km. The large arrival for the sharp boundary case
is completely unresolved in the gradient synthetic. The apparent slowness, phase
bebavior and timing are consistent with a wide-angle multiple. One would expect
wide-angle reflections and multiples to be affected most strongly by gradational
layer boundaries. Several other similar phases exist for both MILROW and
CANNIKIN synthetics at various ranges, although normally they are reduced in
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amplitude by about one-half and resolved for both models. Thus, late multiples
can be greatly reduced in amplitude by gradients, while the direct arrivals and
refractions near the first arrival are virtually unchanged. This is important to
consider since observed seismic boundaries typically have some gradational char-

acter even at sharp geologic boundaries.

A second case we examine is the effect of 'random’ media. Observed seismic
structure usually is not constant or smoothly varying with depth on scales as
small as 100 meters. The media parameters are observed to fluctuate about some
smoother large-scale structure. This is evident in the velocity and density logs
taken from the instrument holes on Amchitka Island (Figures 7a and 7b, adapted
from Perret and Breding, 1972 and Perret, 1073). These structures correlate with
the geology and are likely to be larger horizontally than vertically. To investi-
gate the effect of such variations we add randomness to the upper layers of the
gradient model discussed above (see Table 4). The gradient model is used as a
base to.avoid large, perhaps unrealistic variations in the synthetics resulting from
caustics in the sharp-boundary case. The variances are larger (in percent) for the
shallowest layers to allow for some effect of pressure in reducing the amplitude of
variations. The randomness in the model is not as strongly varying as the
observed well-log data, but is a filtered version to demonstrate the effect without
requiring too fine a grid spacing for the FD model. We also permit the horizontal
and vertical aspects to differ, for the reasons stated above. The aspects are essen-
tially the mean anomaly radii in each dimension. The results are shown in Fig-
ure 8, compared to the gradient case. As expected, the random media scatter
high-frequency energy far back into the coda; it is even seen following the arrival
of the Rayleigh wave. The scattering completely obscures Jater multiples in the
record. This has interesting implications for one-dimensional (1-D) models. Fun-
damentally, it means that crustal multiples from sources less than 2 km deep
may not be well-behaved and should not be used to constrain 1-D velocity
models. Perhaps late pulses in the near field should not be modeled; this would
be additional justification for the approach of Burdick, et al. (1984), where just
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the first few arrivals and the surface wave are modeled. The information con-
tained in such coda could determine statistical properties of the medium, but lit-

tle more.

The effect of site material is investigated in Figure 9. Site properties often
vary among stations due to the erosion of fault or fold geometries or the existence
of basins, ridges and other structures. Here, we surround one station with a fast
(bard) material lens 1 km in diameter, and the next station out with a slow (soft)
lens, also 1 km in diameter. Both lenses are tapered somewhat with depth to
mimic the generic forms for the corresponding geologic structures. That is, the
fast lens is wider at its base, and the slow lens is wider at top. The slow material
has compressional wave velocity a = 2.0 km 57!, shear wave velocity § = 1.13
km s7!, and density p = 2.3 g em™>, the fast material has a = 4.5 km 57}, § =
2.55 km s7}, and p = 2.7 g em™>, and the top of the rest of the layer, which is
200 meters thick, has @ = 3.0 km s}, § = 1.7 km s}, and p = 2.5 g cm™3. The

remaining layers are the same as those listed in Table 3.

For both CANNIKIN and MILROW the amplitude at the receiver on the
slow site is 8 factor of 1.5 larger than at the receiver in the same position in the
plane-layered model. A simple conservation of energy argument, ignoring the
transmission coeflicient into the slow layer, would predict an amplification of |
(va VP3)/(vy v/py) = 1.8, where v is velocity and p is density, subscript 1 refers
to the slow medium and subscript 2 refers to the top layer of the plane-layered
model. When the transmission loss on entering the slow material is considered,
the observed amplification factor agrees with the simple prediction. Another
effect is that the particle motion for MILROW at the slow site (receiver at 7 km)
is more vertical than that for the laterally homogeneous case. This is due to the
greater refraction of the ray due in turn to the greater velocity conirast. Small
reverberations and conversions in the slow media may be seen 1 to 2 seconds
after the initial pulse. At 15 km for CANNIKIN, the Rayleigh wave is not
amplified as much as the initial P-wave. This is most likely due to the relative

frequency content of the waves; the Rayleigh wave (2 second period) samples a
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range of depths much greater than 200 meters and is therefore less affected by
the contrast. At the station on the faster material, the amplitude is smaller by a
factor of 1.2 versus the simple prediction of 1.5, not corrected for transmission.
Thus, the simple prediction does not work well. Other factors, such as focusing,
diffraction, and the free-surface interaction may be important. The direct waves
and longer-period surface waves are unchanged at the ranges of 10 and 12 km
(which are beyond the local station structures), although small scattered shorter-

period phases do enter the records.

The structure between the blast and station M05 (Figure 10) is approxi-
mated from Orphal et al. (1670). The velocity model below the source is the
same as in the sharp boundary model, and the synthetics are compared to those
of the sharp boundary case in Figure 11. This result is similar to the result of
the previous case in that the waveforms are quite sensitive to the structure where
the rays bottom. The amplitudes differ by up to 50%. About 30% more ampli-
tude, which translates to 70% more energy, is converted into the surface wave by
the structures which dip down away from the source. This tendency of dipping
layers to convert body waves to surface waves is examined in more detail in
Vidale, et al. (1985). Conversely, we note here that layers dipping the opposite

direction convert surface waves to body waves (Stead and Helmberger, 1988).

Shallow structure is seen to affect the amplitude of body waves as well as
surface waves. These effects are difficult to model deterministically because the
structures are poorly known. Derivation of a relatively detailed flat-layered
mode! with sharp boundaries using ray techniques may help to understand the
wave propagation involved, but should not be taken to represent the detailed
structure of the earth. Unknown shallow structure may contribute to the misfit

between the synthetic seismograms and the data to be examined below.




COMPARISON OF VARIOUS STRUCTURE MODELS AND DATA

Now we compare the synthetics for the various cases described above to the
available near-field data. The purpose is to show which of the various structures
result in the best fit to the data. We choose foqr stations, two for each event, as
representative of the available data. For MILROW these stations are MO1 and
MO8, at 8.0 and 11.5 km, respectively. For CANNIKIN, we choose M05 and M06
at 15.8 and 18.7 km, respectively.

Figure 12 shows a comparison of the radial and vertical records from station
MO01 for MILROW. These data are compared to the synthetic response at 8 km
for four of the above models: the gradient boundaries, the sharp boundaries, the
faulted geometry and the random media. The first arrival is well-modeled by
both the sharp and gradient boundary cases. This is not surprising, since Bur-
dick, et al. (1084) fine-tuned the sharp boundary model to the data. But, the
longer-period part of the signal, which includes the Rayleigh wave, is best
modeled by the faulted geometry. This station is not far from the faults
represented in Figure 10, so vne affects of the faults and tilted layers are resolved
in this case. In Figure 13, the station M06 for MILROW shows the same result,

the faulted model most accurately models the data.

The CANNIKIN station M05 is compared to the synthetics in Figure 14.
Here, the gradient model is the best fitting. From this we infer that the effect of
the faults on the larger, longer period and more distant source CANNIKIN is not
as strong as that for MILROW. In addition, the effects of sharp boundaries are
clearly not present in the data. Some filtering appears necessary for the other
three cases, perhaps crustal Q is important and would reduce some of the higher
frequencies in the coda. Station M08 for CANNIKIN shows the same result (Fig-
ure 15).
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COMPARISON OF VARIOUS BOMB SOURCES AND DATA

In this section we will show that for the data we are using, structure has
more effect in determining the amplitudes and shaping the waveforms than the
type of RDP used. Several RDP functions have been proposed, but in this sec-
tion we will show that no one source model significantly outperforms the others
for the near-field body and surface waves for the explosion MILROW and CAN-
NIKIN. The source of Helmberger and Hadley (1881) (H-H) was described above,
but the sources of von Seggern and Blandford (1972) (vS-B) and Meuller and
Murphy (1971) (M-M) are also frequently used in the study of explosions.

Von Seggern and Blandford (1972) postulate a source given by
W(t)=w°°[1-c"‘" (1+K't-B'(K't)"‘)] (15)

where ¥ is the source strength, and K' and B’ are corner frequency and

overshoot parameters similar to K and B in the H-H source.

Meuller and Murphy (1871) postulate a source most easily expressed as a
convolution (Barker et al., 1985):

2
fd V'

W(t) = P(t)* F(t) (16)

where the ¢ indicates convolution and P (t) and F (t) are as follows:

P(t)= ((Pos - Poc)e™ + Poc) H(t) (17)
and
; st
F(t)= "_n(b_;.b)e__ (18)
Furthermore,
3
. . 4 Te
dynamic cavity pressure Py, = 3 Cyup (T—) (19)
el
static cavity pressure Pog = 15p 9 A (20)

y0.33

© G oo )

elastic radius r, =
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- yo®
cavity radius r, = C, W (22)
and
Cc
a=Cquwy= ;,"‘ (23)
b 4
- _*%‘2& (24)
a = -'21; (25)
b= ‘—;2(5 - 0.25)° (26)

The constants C,; through C 4 are calibration constants dependent on the source

medium and defined as follows

" €y = 200,000(~ :m )Ze (27)
C, = 1630 E°62 4024 ,-067 (28)
C 3 = compaction factor (hard rock 1.0, tuff 0.6) (29)
C ¢ = proportionality factor (tuff 1.5, rhyolite 2.0) (30) .

The amplitude calibration, A /A, , is determined using calibration events (eg:
2.8 for salt, 2.0 for shale and 0.25 for tuff). For the other values in the equations,
Y is the yield in kilotons, A is the source depth, p is the density, V, is the
compressional wave velocity, E is Young's modulus, and A and g are Lame's con-
stants. All parameters except the yield are in egs units. The convolution in

Equation 16 is analytic, resulting in the following expression for the source

V()= :’; ” +a):+b’ [(a +a)e® sin (bt ) — be * cos (bt ) + be ]
:::Cb'g [ac * gin (bt ) - be* cos (bt) + b] } (31)
78




Although the expression of Equation 16 is simpler, this expression is often more

convenient in practice.

The parameters used for the three sources are given in Table 5. Those for
the M-M source are determined by local structure, source depth and source size.
The parameters for the other two sources are determined from teleseismic body

and surface waves by Lay, Helmberger and Harkrider (1884).

The three RDP representations are compared in Figure 16. The far-field dis-
placement time functions for the three sources are shown at the top. There is lit-
tle difference between the three traces. The RDP functions are plotted next, and
the level of the permanent offset, ¥, is 1.4 x 10! for the H-H and vS-B sources
and 2.4 x 10" for the M-M source. At the bottom are the spectra of the dis-
placement time histories. The spectra are similar except that the M-M source has

a higher long-period level.

The data are compared to FD seismograms computed for the M-M, vS-B,
and H-H sources in Figures 17 and 18. The various source time functions are
convolved with the FD impulse responses to form the seismograms in these

figures.

Figure 17 shows the comparison for MILROW at station MO1. Here, the
vertical amplitudes are all within §% of those for the data, but the fit to the
radial component is not as good. There is little difference between the three RDP
sources. This observation agrees with the spectra in Figure 16, where there is lit-
tle difference between the different sources. Figure 18 shows the comparison for
CANNIKIN at station M05. The amplitudes of the RDP seismograms are within
85% of the those of the data in all cases, and within 20% in every case but one.
Here, there appears to be a slight preference for the M-M formulation.

The fit to the data is good, but the differences between the synthetics for the
various sources are less than the difference between the data and any of the syn-
thetics. The differences between the data and the synthetics are of the same
order as the differences between the synthetics for different plausible structures.
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In this cdse, tilting layers which can trap more energy and local receiver effects
which amplify or diminish body-wave arrivals are at least as important as
differences in the type of RDP. Details of the structure must be better deter-

mined before details of the source time function can be resolved in the near-field.

A final variation on the bomb source is the inclusion of possible source asym-
metry. The motivation for investigating this effect is large variations in the ratio
of first arrival amplitude to Rayleigh wave amplitude seen in the data, but not
sccurately modeled by the various approaches discussed above. Physical condi-
tions which would lead to the formation of asymmetrical cavities are readily pos-
tulated; for example, bedding plane control or rapid vertical changes in material
strength. The Inclusion of asymmetry is accomplished through modification of
the radiation pattern, similar to the implementation of the correction discussed
above. The correction for an ellipsoidal cavity requires the introduction of S-
wave r;diat.ion at the source. Figure 19 is the basis for the development of the
correction: the correction Is quadrupole-like, and for ellipsoidal cavities with a
principle axis oriented vertically, this quadrupole should be well-approximated by
a 45° dip-slip double-couple. We say quadrupole-like because in 3-D the pattern
is radially symmetric, yet this is ideal for 2-D simulations. Double-couple sources
are derived and discussed in Helmberger and Vidale (1988). When scaled for -
RDP instead of moment, the double-couple may be added linearly to the explo-
sion result to produce the response from any ellipsoidal cavity in a radially-
symmetric medium, cavities ranging from pancakes to pencils. The explosion
result should already ‘nclude its correction, with &, set for the appropriate take-
off angles.

The linear combination of the two sources to provide a range of cavities
from pancake to pencil may be expressed as Explosion + ¢ X Double-Couple,
where -1 < ¢ < 1. Note that for the pencil case (prolate), we expect a smaller
teleseismic P-wave, whereas the pancake shape (oblate) enhances the P-wave. At
pear-regional distances the P-waves are affected less, but the surface waves are

strongly affected as displayed in Figures 20 and 21. The ¢ factor Is set at 0.4 in
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these two figures for demonstration. Rayleigh waves are relatively enhanced for
the prolate case. MILROW observations favor the spherical explosion with
perbaps a small prolate correction for some of the stations (eg. M0O4). The CAN-
NIKIN observations strongly support a prolate correction with respect to the
surface-wave development. However, the estimates are crude, taking into
account the fact that the correction postulated here for ellipsoidal cavities is com-
pletely ad-hoc; it has not been rigorously derived with attention to frequency
dependence, coupling, anelastic material behavior, etc. Nevertheless, we believe
this correction is a good first-order approach to the asphericity problem and note
that due to its quadrupole nature, it may be necessary to consider when estimat-

ing tectonic release.

CONCLUSIONS

The use of two-dimensiona! finite difference algorithms to understand acous-
tic anc; elastic wave propagation is a powerful tool. The additional term
described in this paper to correct for the difference between two- and three-
dimensional geometrical spreading significantly improves the accuracy of these

numerical solutions.

Shallow station structure and lateral velocity variations have considerable
effect on the synthetic records computed for the Amchitka blast MILROW. The
velocity structure is shown to be at least as important as the choice of explosion
time function in computing synthetic ground motion for the near-field velocity
data we examine in this paper. The medium immediately surrounding a station
can greatly affect the amplitude of the observed waves, but estimating media pro-
perties at the stations from amplitude variations alone is unreliable. When possi-
ble, station structure should be determined in the field, to a depth and radius
from the station consistent with the periods to be observed. Gradational boun-
daries are shown to fit the data better than sharp boundaries. When coupled
with the effects of random media, we find that impulsive, large-amplitude arrivals
in the coda are not deterministic, and can not be fit to multiples in 3 medium
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with sharp boundaries. Deterministic 2-D local structure is shown to be impor-
tant for MILROW, where faults near the stations are shown to affect the surface

waves.

Source asymmetry strongly affects the near-field surface waves. Such asym-
metry can be modeled as the addition of 8 quadrupole response to the explosion
response. The pancake (oblate cavity) case tends to reduce surface waves while
the prolate contribution tends to enhance surface waves. CANNIKIN favors a
substantial prolate contribution, and thus, smaller teleseismic m, and larger local
surface waves. A characteristic change in cavity shape from spherical to prolate
(eiongated vertically) for larger events could explain the change of slope in the

m, yield curves.
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Table 1. Layer over halfspace model

v, V, P layer thickness
km s? km s! g cm™3 km

6.2 3.5 27 32.0

8.2 4.5 34 00

Model identical to that of Apsel and Luco (1983).
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- Table 2. Properties of sharp boundary model

Key v, V, P layer thickness

kms? kms! gem™ m

A 3.0 1.7 25 200

B 3.7 1.9 2.5 650

C 4.2 20 2.5 875

D 4.7 2.0 2.5 525

E 4.9 2.1 2.55 600

F 5.35 3.1 2.55 500

G 5.5 3.2 2.6 6950

H 6.9 4.0 2.8 00

“The letters in the Key column are used in Figure 12.
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Table 3. Properties of gradient boundary model

Vv, v, P Jayer thickness
kns?! kms?! gem™® m
3.0 1.7 2.5 100
g’ g 2.5 200
3.7 1.9 2.5 350
g g 2.5 375
4.2 2.0 2.5 225
g 2.0 2.5 375
4.7 2.0 2.5 125
g g g 375
4.9 2.1 2.55 250
g g 2.55 375
5.35 3.1 2.55 125
g g g 375
5.5 3.2 2.6 4250
g g g 5000
6.9 4.0 2.8 (< <)

‘g = linear gradient across layer
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- Table 4. Properties of random media model

v, vV, P v, horizontal vertical layer
variance aspect aspect thickness

kms?! kms?! gem® km s! m m km
3.0 1.7 2.5 0.4 125 100
3.3 1.8 2.5 0.35 188 30 200
3.7 . 1.9 2.5 0.3 250 50 350
3.9 1.95 2.5 0.25 250 50 375
4.2 2.0 2.5 0.25 375 50 225
4.4 2.0 2.5 0.25 375 50 375
4.7 2.0 2.5 0.25 500 50 125
4.8 _2.05 2.5 0.25 500 50 375
4.9 2.1 2.55 250
g’ g 2.55 375
5.35 3.1 2.55 125
g g g 375
5.5 3.2 2.6 4250
g g g 5000

6.9 4.0 2.8 00

*g = linear gradient across layer
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Table 5. RDP parameters

Helmberger and Hadley (1981) source

K = 805
B = 1.0
Vo = 1.4 x 101!

Von Seggern and Blandford (1972) source

K =528
B =25
Vo, == 1.4 x 10!

Meuller and Murphy (1971) source

Yield = 1000 Kt
h == 1200 m

V, = 3.4 km/sec
V, = 1.7 km/sec
p=21g/cm?
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Table 6. RDP parameters

Factor MILROW CANNIKIN

Helmberger and Hadley (1981) source

K (s?) 9.0 6.0
B 1.0 0.625
¥ (cm® 1.0 x 101 5.69 x 10*!

Von Seggern and Blandford (1972) source

K (s) 9.0 6.0
B’ 1.0 0.625
¥, (cm® 1.0 x 10! 5.69 x 10!

Meuller and Murphy (1871) source

Yield (Kt) 1000 5000
h (m) 1125 1725
V,, (km 571) 4.2 4.7
V, (km s71) 2.0 2.0
p (g em™®) 2.5 2.5
AJA 2.0 2.0
Comp. factor 0.8 0.8
Prop. factor 20 , 2.0

See text for detailed explanation of factors.
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FIGURE CAPTIONS

Figure 1 Diagrams showing energy with takeofl angle i in the range ip < i < iy + di
for a point source and for a line source. The energy varies as sin iy for the point source case
but does not vary as & function of i for the line source case.

Figure 2 Comparison of radiation pattern for corrected and uncorrected line sources.
The horizontal line shows the isotropic radiation pattern which results from an uncorrected
explosive line source. The V&in i curve shows the best radistion pattern to simulate an explo-
sive point source. The two sinusoidal curves show the result of mixing a line source force
with a line source explosion with ksubf==0.5 and ksubf==0.6 (50/50 mix and 60/40 mix,
respectively). The mixed sources are meant to be accurate in the range i = +20° to +160°.

Figure 8 Comparison between uncorrected and corrected FD seismograms and ana-
lytic Cagnaird seismograms for an explosive point source in a balf-space. The receiver is at a
range 30 times the source depth to allow for the development of a Rayleigh wave that is large
compared to the direct P-wave. The amplitude scale is the same for all the radial and all the
vertical traces, but different between the radial and vertical components.

Figure 4 Location of the Amchitka nuclear tests and the near-field strong motion
instruments deployed to record them.

Figure 8 a) S-velocity profiles used for finite difference simulations. Three cases are
shown: flat layers with sharp boundaries (sharp), gradient boundaries (gradient) and random
media (random). The profile for sharp boundaries is located correctly along the velocity axis,
all other profiles have been shifted 1.0 and 2.0 km/s for clarity. These models are also
described in Tables 2, 8 and 4. Two profiles, A and B are shown for the random media to
show the variation borizontally as well as vertically; the two profiles are 12 km apart horizon-
tally. b) P-velocity profiles used. The gradient and random media curves have been shifted
2.0 km/s relative to the sharp boundary profile. ¢) Density profiles used. The curves have
been shifted 0.2 g/cm™ relative to the sharp boundary profile.

Figure 86 Comparison of finite difference simulations for sharp and gradient boun-
daries. Models are described in Figure 5 and Tables 2 and 8. Depths and RDP sources (H-H)
are appropriate for MILROW and CANNIKIN, respectively. Ranges (given in center) are
consistent with available data. Amplitudes are in em/s.

Figure 7 a) P-velocity profiles showing well-log data from Perret and Breding (1972),
and Perret (1973). The heavy solid line is the sharp boundary model and is correctly located
in velocity. The dashed line is the random model used for the simulation, shifted 2.0 km/s.
The light lines are the observed profiles for CANNIKIN and MILROW, shifted 2.0 and 5.0
km/s, respectively. b) Corresponding density profiles. Dashed line and light line are shifted
0.4 and 0.75 g/em™, respectively. Only CANNIKIN density log is available.

Figure 8 Comparison of finite difference simulations for random and gradient models.
Models are described in Figure § and Tables 3 and 4. Depths and RDP sources (H-H) are
appropriate for MILROW and CANNIKIN, respectively. Ranges (given in center) are con-
sistent with available data. Amplitudes are in cm/s.
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Figure ¢ Comparison of finite difference simulations for fast and slow sites on the
gradient model, and the original gradient model. See text for description of fast and slow
sites. Depths and RDP sources (H-H) are appropriate for MILROW and CANNIKIN, respec-
tively. Ranges (given in center) are consistent with available data. Amplitudes are in em/s.

Figure 10 Diagram of the faulted model. The distances are in km. The fault locs
tions and offsets are taken from Orphal, et al. (1971), for the MILROW - MOS cross-section.
The base model is the sharp boundary model described in Figure 5 and Table 2, and the
letters are keyed to Table 2. The vertical fault offsets are added to the sharp boundary
model. The dip of the layers in the region of the sources incorporstes the finding of Burdick,
ot al. (1084) that the structure above the sources is slightly different for CANNIKIN and MIL-
ROW.

Figure 11 Comparison of finite difference simulations for faulted and sharp boundary
models. The sharp boundary mode! is described in Figure 5 and Tables 2. The faulted model
is described in Figure 10. Depths and RDP sources (H-H) are appropriate for MILROW and
CANNIKIN, respectively. Ranges (given in center) sare consistent with available dats.
Amplitudes are in cm/s.

Figure 12 Comparison of data to four of the models previously described (Figures 6,
8, 0 and 11). Data is for station MOl for MILROW, at a range of 8.0 km. The synthetics are
all at a range of 8.0 km. Amplitudes are in cm/s.

Figure 18 Comparison of data to four of the models previously described (Figures 6,
8, 9 and 11). Data is for station M08 for MILROW, at a range of 11.5 km. The synthetics
are all at a range of 12.0 km. Amplitudes are in cm/s.

Figure 14 Comparison of data to four of the models previously described (Figures 8,
8, § and 11). Data is for station M05 for CANNIKIN, at a range of 15.8 km. The synthetics
are all at a range of 16.0 km. Amplitudes are in cm/s.

Figure 16 Comparison of data to four of the models previously described (Figures 6,
8, 9 and 11). Data is for station M06 for CANNIKIN, st a range of 18.7 km. The synthetics
are all at a range of 19.0 km. Amplitudes are in ¢m/s.

Figure 16 Comparisons of the Helmberger-Hadley, MeullerMurphy, and von
Seggern-Blandford RDP functions. The top graph shows the time derivative of the RDP,
which is the far-field displacement time function for the 8 sources. The next graph shows the
RDP’s of the 8 sources. The long-period asymptote of the RDP is the ¥, of the source. The
bottom graph shows the amplitude spectra of the far-field displacement time functions for the
3 sources. The parameters used for these RDP functions are listed in Table 8.

Figure 17 Comparison of the MeullerMurphy, von Seggern-Blandford and
Helmberger-Hadley RDP functions used with the gradient boundary model (Table 8). Ampli-
tudes are in em/s. The parameters used in the RDP functions are listed in Table 6.

Figure 18 Comparison of the MeullerMurpby, von Seggern-Blandford and *
Helmberger-Hadley RDP functions used with the gradient boundary model (Table 3). Ampli-
tudes are in em/s. The parameters used in the RDP functions are listed in Table 6.
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Figure 10 Development of a quadrupole correction for cavity asphericity. Cavity on
Jeft is ellipsoidal, with the long axis vertical. The arrow on the inside of the eavity represents
the pressure acting on the cavity wall. This pressure will radiste both P- and S-wave energy,
as partitioned along and normal to the propagation direction. The resultant radiation pat-
terns are shown immediately to the right of the cavity. The P-wave pattern is elongate hor-
isontally, because the increased radius of cavity curvature will amplify the P-wave energy,
while decreased radius of curvature will diminish it. This result is further partitioned into an
explosion and a quadrupole. The size of the explosion should be that for a spherical cavity of
the same net volume as the ellipsoidal cavity. The quadrupole is added to this in varying
amounts, dependent on the amount of asphericity.

Figure 30 Comparison of synthetics for a spherical and aspherical cavity explosions
(1abeled Explosion, Prolate and Oblate) to dats from MILROW. The prolate and oblate cav-
ity synthetics are made with a quadrupole correction for asphericity, both fixed at a 40% con-
tribution. Synthetics for all sources are scaled equivalently. Amplitudes are in em/s. Both
radial (R) and vertical (V) components are shown. The synthetics have been filtered with &
Te == 0.05 operator and detrended to remove an exponential with time artifact of the higher
order terms of the asymptotic source expansion.

Figure 21 Comparison of synthetics for a spherical and aspherical cavity explosions
(1abeled Explosion, Prolate and Oblate) to data from CANNIKIN. Only radial components
are shown. Compare Figure 20 (MILROW). Scaling and filtering of these synthetics are the
same as in Figure 20.
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THEORETICAL RAYLEIGH AND LOVE WAVES
FROM AN EXPLOSION IN PRESTRESSED
SOURCE REGIONS

BY D. G. HARKRIDER, J. L. STEVENS, AND C. B. ARCHAMBEAU

ABSTRACT

 Expressions and synthetics for Rayleigh and Love waves genersted by
various tectonic release models are presented. The multipole formulas are
given in terms of the stengths and time functions of the source potentials.
This form of the Rayleigh and Love wave expressions s convenient for
separating the contribution to the Rayleigh wave due to the compressional
and shear wave source radiation and the contribution of the upgoing and
downgoing source radiation for both Rayleigh and Love waves. Because of
the ease of using different compression and shear wave source time func-
tions, these formula are especlaly suited for sources for which second and
higher degree moment tensors are nesded to describe the source, such as
the initial value cavity release problem.

A frequently used model of tectonic release is a double couple superim-
posed on an explosion. Eventually we will compare synthetics of this and
more realistic models in order to determine for what dimensions of the tec-
tonic release model this assumption is valid and whether the Rayleigh
wave is most sensitive to the compressional or shear wave source history.
The pure shear cavity release model s a double couple with separate P
wave and S wave source histories. The time scales are proportional to the
source region’s dimension and difier by their respective body wave veloci-
ties. Thus, a convenient way to model the effect of differing shot point
velocities and source dimensions s to run a suite of double couple time his-
tory calculations for the P wave and SV wave sources separately and then
sum the different combinations.

One of the more interesting results from this ansalysis Is that the well
known effect of vanishing Rayleigh wave amplitude as a vertical or hor-
Isontal dip slip double couple model approaches the free surface Is due to
the destructive interference batween the P wave and S8V wave generated
Rayleigh waves. The individua! Rayleigh wave amplitudes, unlike the SH
generated Love waves, are comparable in sise to those from other double
ocouple orientalons. This has important implications to the modeling of
Rayleigh waves from shallow dip slip fault models. Also, the P wave radia-
tion from double eouple sources is & more efficlent generator of Rayleigh
waves than the assoclated 8V wave or the P wave from explosions. The
latter is probably due to the vertical radiation pattern or amplitude varls-
tion over the wave front. This effect should be simlilar to that of the
interaction of wave front curvature with the fres surface.
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INTRODUCTION

A frequently used model of tectonic release from underground nuclear explosions is a
double couple superimposed on an explosion. For a point double couple, the time histories
for the source compressional (P) and shear (S) waves are identical. For more realistic
models of tectonic release such as the formation of a cavity in a pure shear Seld, the source
radiation pattern is identical to a double couple but the P- and S- wave source histories
differ. We restrict tectonic release to explosion induced volume relaxation sources in a
prestressed medium and do not consider earthquake triggering by an explosion. For a
spherical cavity, the P- and S- wave time scales are roughly proportional to the eavity
dimensions and differ by their respective body wave velocities. We will show that Rayleigh
waves excited by the source P-waves are almost completely out of phase with the S-wave
generated Rayleigh waves and thus this difference in source time histories may in some

cases be important.

We present expressions and synthetics for Rayleigh and Love waves generated by
various tectonic release models. The multipole formulas are given in terms of the stengths
and time functions of the source potentials. This form of the Rayleigh and Love wave
expressions is convenient for separating the contribution to the Rayleigh wave due to the
P- and S-wave source radiation and the contribution of the upgoing and downgoing source
radiation for both Rayleigh and Love waves. Because of the ease of using different
compression and shear wave source time functions, these formula are especialy suited for
sources for which second and higher degree moment tensors are needed to describe the

source, such as the initial value cavity release problem.

In 1964 Haskell and Harkrider presented formulations for sources and receivers in
multilsyered isotropic halfspaces. The formulations were for general point sources which
were simplified for particular sources. Haskell gave the results for point forces, dipoles,
couples, double couples and explosions. Harkrider gave expressions for the surface waves

from explosions and Green's functions, ie. point forces. Both formulations used propagator
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matrices for homogeneous isotropic layers. Ben-Menahem and Harkrider (1964) extended
the far Geld results of Harkrider (1964) to couples and double couples of arbitrary orienta-
tion.

Other than the sources investigated the basic difference between the results was that
Haskell propagted from the source up to the free surface, while Harkrider obtained the
source and receiver depth effects in terms of layer propagators from the surface down to
the source as well as the receiver in order to demonstrate reciprocity. To obtain the latter
result Harkrider used inverses for the homogeneous layer propagators which formed a
group, ie. the inverse of the product of two layer propagator matrices was related in the
same way to the elements of the product as the inverse of each layer matrix was to the ele-
ments of the homogeneous matrix. This is not true for the homogeneous layer inverse
which is produced by replacing the layer thickness with the negative layer thickness. Each
formulation has advantages. Harkrider (1970) reduced the numerical problems of his for-
mulation by evaluating his expressions using the compound matrix relations of Dun-
kin(1965) and Gilbert and Backus (1966). Further numerical improvements to layer matrix

methods can be found in Kind and Odom (1983).

Hudson(1969) extended the formulation of Haskell(1964) to propagators for isotropic
vertically inhomogeneous velocity and density structures. Since Haskell’s formulation did
not use inverse propagators this was relatively straightforward. Douglas, etal(1871) used
reciprocity relations with Hudson's formulation to obtain the vertically inhomgeneous
results for explosions equivalent to Harkrider’s multilayer result. It was not until the mid-
dle 1970’s that Woodhouse (1974) showed that this inverse was true for the more general
isotropic inhomogeneous halfspace.

Ben-Menshem and Singh (1968) presented a formulation using multipolar expansions
of the displacement Hansen vectors. We use s similar multipolar expansion of the scalar
potentials for P, SV and SH waves. Since pumerical finite difference simulations of complex

source or source region radiation routinely use the divergence and curl of the displacement
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field to separate P- and S-wave radiation and since these are easily related to P- and S-
wave potentials, this type of expansion was a natural one for this class of problem. This
was the original motivation for using potential expansions (Bache and Harkrider, 1976).
In addition, it allowed us to use the theoretical results of Harkrider (1964) for Rayleigh
and Love waves in multilayered media by means of a trivial generalisation. For theoretical
problems, the choice between multipolar expansion of Hansen vectors and potentials is a
matter of convenience. In fact, we use the Hansen vector representation of the displace-
ment field for a cavity initiated tectonic release as our fundamental source and then con-
vert it into potentials.

This formulation, either in preliminary drafts of this manuscript or as a part of
technical reports, has been referenced and/or used by Bache and Harkrider (1876), Bache
etal (1978), Harkrider (1981), and Stevens (1882). The prestress fields discussed in this
paper are restricted to homogeneous pure shear fields. More complicated cases can be found
in Stevens (1982).

In the next section we present the displacement fields and potentials for the tectonic
release source and the various approximations to it which have appeared in the literature
including the point double couple. In addition we give the displacements and potentials for
the explosion model corresponding to a step pressure applied to a spherical cavity. The
sources are discussed in terms of their equivalent moment tensor forms and we presents
illustrative comparisons of their far field time functions. In the following sections we
present the multipole extension to Harkrider (1064) and then evalute it to obtain surface
wave expressions for the sources mentioned above and also the second order moment ten-
sor for comparison with Mendiguren (1975). Finally we calculate Rayleigh and Love wave
seismograms for canonical orientations of the pure shear stress field (Harkrider, 1977) and

discuss them in terms of their P- and S-wave excitation.
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TECTONIC RELEASE SOURCE MODELS

The tectonic release source model used in this paper is the instantaneous creation of
a spherical cavity of radius Rg in the presence of pure shear , 79, at infinity. Details on
the behavior and the literature of this and other tectonic release sources can be found in
Stevens (1980). The form of the solution used here and the notation is from Ben-

Menahem and Singh (1981, p228). e e e
(x,w) = 78 LE(kR) + A Na(k,R) (n
. where the Hansen vectors are
o p o SHGR) BUR) o
(2
K)(k,R)

dBXR) | H0R) ]\,5%

[
Na(R) = 0 L P+ T IR )

and the vector spherical harmonics are

(3)
VB BS = 2 P§(cosl) sin2¢ ey + 6 P} (coss) cos24 e,

The coeficients are given by
. rQ [2F 2,1(keRo)—F: u(foRo)]
b= - 6x k’ ’ Ul A,
(4
. [eruRra-FuaRo)]
L Tkl vy s(w) z
where

Fiae) = L5 o - 4% @

Figl€) = l?’r(”-l) -1114"(6)-0-% % (€)
(5)
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Fide) = [%w—x) -5 [%n HE) + SA% (O

A; = 21(141) Fy (kgRo) Fis(koRo) — Fi(kgRo) Fia(koR0)

and

(W)= -.—;

I;Mmm,ﬁeﬂmmvmnmﬁvmby
L&(LR) = -V [F0R) P2 (cos) in24]
and ©)
N(RR) = = 1V [H00,R) PE(cost) in26 ] + 6 HR) Pl (cowt) [sind 01+ coot )

Using the following relations

ao“' &2 Kk, R) P} (cost) cosd
oA,

3z, = & M1k R) P (cont) sing ™

8A,

Pide = —ik$ Bk, R) P$(coe?) sin2¢

where

A, =~ Bk, R) = ZPE)

we have

A,
Li(kR) = ¢ { Ds,0z, 1024 }

(®

. 8 A oA 0A
N.(b'ﬁ)-—. T"- {277875%4'&”[7’:014-7;‘1‘:]]

and we can write the cartesian components of displacement as

A, 0A
G(xw) =i "l' 85,02,02, bﬁ { B2,02,05; © [_aL bt T’lL ‘“]}] @
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where
K= i"lz'e
and

K= :—’n;;

This solution in spectral moment tensor form is

-— v ~ o~ l 7 -
& (x,w) = — [M,, (Gis+ Gisa ) + 5 My Gy 513

where the moment tensor components are
My, (w) = sz ()

- { 4xput? -:-;L

M 2 (W) = Ham (w) = ﬁma (w)

(a'n.l + Giaz + aeu]

. 48xp? | Ko
- —-k:"—— T"- -
since
= 1 |8AAl)
Cyja(w) = 4xp {0:,8:,8:.
and
= (.
Gyppr2 () = 82,02,
-l g2 oA,
dsps * 8%,02,02,
and

A ,-A,)

Gins+ Gigy “’;;{z Bz 03,01, + & [511 b2, + &g

(10)

(11)

(12)

(13)

(14)

(18)

(18)

Thus the lowest rank of moment tensor, which this source can be expressed as, is a second

rank plus a fourth rank moment tensor (David Cole, personal communication, 1982).
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From Ben-Menahem and Singh (1981), as w—0

K 1 *71R  (1—0) [ (1-3¢) o?
T‘% =Y 403’ R (7-80) {20+ (1-20) o* ki ()

where ¢ is Poisson’s ratio. Substituting this limit, we have

M 1 oox v® g3 (1=9)
M)*U) -y ._wml’ N2 Ro (7_“) (18)
From the definition of scalar moment
1—-0

My = lim (iwMygfw)} = 207 13 RS i (19)

7-50)

which is the same result obtained from the approximate solutions to this problem given by
Randall (1966) and Archambeau (1972) (Aki and Tsai 1972, Randall 1978, Harkrider
1976),

Minster and Suteau 1977, Minster 1979)

Also
K, 1 *12 . (1-0) 3o
rinda i Rl = {”‘“ 7 ] )
and
— e R el (21)
as w—0.

This higher order moment tensor complexity is simply due to the P wave time his-
tory being different than the S wave. This difference in time histories is not unusal and is
typicaly due to source finiteness as here. Because of the source volume symmetry , it is not
a function of takeoff angle and asimuth such as is in the case of fault plane directivity. We
ean keep the double couple and more generally the second order moment tensor formuls-
tion if we separate the Green’s function into its P wave and S wave contributions and

define separate P and § wave moment tensor components. For this case M3 (w) and
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{8X(w) respectively where
M) = i anpa? %
and (22)
H8) = i anpar 2
ky

as in equation (12), with corner frequencies

) a | (1-80) Y

¢ = 2”R° 5(1-'0)

and

,(l)_ P [(7_50]]%
¢ 2zR, | 5(1-9)

and their respective whole space Green’s functions

1, %4
4xpu® 02,0292,

Guls' + Gl = -
and (23)

Fw,7m_ _1 8'A, 2| o OAy ., 94
Gﬂ.’ + Gig) lrpw’ {2 82,802,025 + "l [ J P + 93 \

For the elastic whole space, this is trivial. This Green's function separation can also be
done for a vertically homogeneous halfspace using the the multipole potential formulation
of the next sections.
We could obtain the desired source description in terms of the scalar compression
potential, Y, and the shear rotation vector potentials, W , by the following operations:
$a- %V'n(x,w)
and (24)

Ve .:7qu(: )

oo the displacement expressions, equation (1), as was done for the second rank seismic
moment tensor in APPENDIX C
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But equations (1) and (2) are already in the form of the general quadrupole of Har-
krider (1076)

¥z = sin®f sin2¢ {x.%lf;’(uz) + sx,”i(;ﬁ)—}
&) = sin2¥ sin2¢ {&w + -;—K, [%’&’(k,k) + -’i(:'ﬁ)-]} (25)

)
&) = sinf cou2¢ [zx. '5(;"’” +K, [%I&’(k,k )+ ﬂ;ﬁ’.]}

° Comparing equation (25) with equations (49) and (50) of Harkrider (1976), we can write

down the cartesian displacement potentials (Harkrider,1876, equation (47)) for this class of

source as

® = K, sin% sin2¢ HJ(k,R)

¥, = K, cost sinf cosé H)(E,R)
(26)
¥, = ~K, cost sin® sing HY(k,R)

W, = —K, sin% cos2é H)(k,R)

F = 52 P3(cont) ain2h HLR)

¥, = 22 i (coat) cont HY(E,R)
(27)
T, = -2 P (cont)sind 1Y1,R)

- K
Vs = =L P} (cot) cosd$ HY(1,R)
For a pure shear dislocation or double couple fault model (Harkrider,1976)

x,--;ﬂl‘:’).k'

il
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For the dislocation slip history, we use the Ohnaka (1973) ‘w-square model’ (Aki 1967),
which is the minimum phase ‘w-square model’. In terms of moment history it is given by

- kiM,
M) = o rrioP
with corner frequency
1
!‘ = 2”1‘0
and
Ke-to L _H . (28)

41pP 0 (kp+iw)
For both P and S waves the far field rise time is given by To = 1/kr

For the Randall-Archambeau approximate tectonic release model (Harkrider, 1976),
after correcting a sign error in the stress definition,

Mo S D(k,Ry)
4xp? v R,

K, = (29)

where M, is given by equation (19) and

D(z) = cos £ — sin z
with corner frequencies
I‘S’ ‘= 2:)?:
and
w.V3is
¢ 2xR,

For the tectonic release sources, the far-fild rise times for P and S are given by
TS = Rofa snd TP = Ry/f respectively.

The time histories of explosions are usually expressed in terms of their reduced dis-
placement potentials ¥(¢) which is implicity defined by the explosions linear displacement
radiation field as
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8 ¥(t — R/eo)
®R R

. =—
Since

= ?"53
we have

® = i ¥(u) & BYLR)
For consistancy with the second order moment tensor, we bave
M(w) = M;; = My = My,
= 4xp0® V(w)

We will only consider two explosion time histories
— M,
M) =<5

and

M, e‘( k Ro—0p)

M= [[1 - iR /AJ 4 k3R3]%

where

kR,

0p = tan™!
ll - kfRE /4 i

with corner frequency

which corresponds to a step pressure applied to the walls of a cavity of radius R,.

(30)

(31)

(32)

In Figure 1, we show the far-field radial (P) and tangential (S) displacement time
histories for the exact tectonic cavity release, for the Randall-Archambeau approximate

cavity release, and for the 'w-square’ double couple model. The cavity radius is the same
for the first two models and the P and S rise times for the double couple are chosen to be
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the same as the cavity release S rise times. This is more evident in Figure 2 where we show
the corresponding P- and S-wave velocity fields. The moment is the same for all the
sources. The S-wave velocity fields for the cavity release and the double couple are very
similar. The basic difference is in the time duration and amplitude of their P-wave fields.
In Figure 8, we compare the P- and S-wave displacement fields in detail for these three
sources by overlaying them and having the same moment for each comparison. The
moments for the P-waves are greater than the S-waves inorder to better display the

differences in wave form.

In Figure 4, we compare the P-wave, ie. radial, displacement and velocity fields for
the tectonic eavity release and the eavity step pressure explosion for the same moment and
cavity radius. The time histories are quite similar with the basic difference being the dis-
tortion or bump on the cavity release time history which eorresponds in arrival time to »
Rayleigh wave traveling around the cavity. The far field displacement spectra for all four

sources are shown in Figure § with their corresponding corner frequencies.
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AN ELASTODYNAMIC SOURCE IN A VERTICALLY INHOMOGENEOUS
HALF-SPACE FORMULATION

As our source in a locally homogeneous region, we take the slightly modified elasto-
dynamic source form of Archambeau (1968).

-k P (Aen 08 m ¢+ Buntin m 4} Pcont) KYLR)

o=l ma0
(33)

Vg =22 5 35 (O o mé+ DL sin m ¢} Pioont) HY1,R)

') o=l med

where 3. and Wd are the Fourier-time transformed compressional and Cartesian shear
potentials (j=1, 2 and 3) respectively. In order to express these potentials in terms of the
separable solutions to the Helmholts equation in cylindrical coordinates, we use the
Erde'lyi integral ( Harkrider, 1976, Ben-Menahem and Singh, 1981).

W2k R) Pitoost) = L o (b sl [ Priou/b) Fudaie) b (34)
0
where
F,=t ﬂ'p(-l'.ﬂ,.ll-k l)
$ v,
(L L L T 3
by m by, = _,-(p_k.r)% i k> &

PP (&)= (1-6)"" P™ (¢)

Pr (&) m (€-1)"A P ()
b=

v is cither @ or B, the compression or shear velocity respectively and (r, s) = (0, b) is the
source location.
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Making use of this relation, we can rewrite equations (33) as

=i [ (A coms + B sin me) Fo Ju(ir) &t (35a)
m=l "y

Uy = 3 [ (@ onmé + DY i mé) F, Julle) &b (355)
=0

where

A== ﬁElm(h-:) |+ Ao P73/}

Ba=-% -(i}} [agn(h=2) |"** B P {%/k} (36)

6.(.1')_25 ﬁb)':[.”(h_‘) ot 0(..’.) Pr L CUA
(L] s

DY =25 LI (amb—s) 1=+ DL P 51

Next we obtain expressions for the cylindrical SV potential, ¥, and the cylindrical SH
potential, x, which are convenient potentials for our cylindrical eoordinate system, in
terms of Cartesian SV and SH potentials given in equation (35). The vertical dislacement
integrand, w, of its k integral is related to the compressional and Cartesian SV potential
integrands by

- Lad a$2 0$l
v =% + 8z 8y (37)

and in terms of the compressional and SV potential integrands by
- 00
TG+ (38)
which by inspection yields the relation
" e "oy

From Harkrider (1976), the integrands of the cylindrical and Cartesian SH potential are

39(a)
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related by

X= 7:; (k3 ¥y) (39b)
Performing the above operation and comparing with the cylindrical SV potential
o
v 2'_:0 J (B cnmé + Fu sin mé) F, Jullr) &t (40)
°
we obtain the following relation between coefficients as derived in Appendix A.
2F, = (88, - T )- (B4l + B )
2F. = (3, + G )+ (D8 - B2 )
where
Cl) and DY) are sero form > n
and in addition
CP =Df» Ci) = - D
and
F, o=0.
For the cylindrical SH potential, we have using equation (39b)

X% =3 f."é(a ) cos m¢ + D sin m ¢} F, Ju (kr) dk (41)
[]

[ L}

L

The cylindrical source potentials given by equations (35), (40), and (41) may now be
substituted into the multilayer formulation by Harkrider (1064). But first we note that
alternating terms in the infinite series in equations (38) are of opposite sign depending on
where 3 is greater or lesser than h. We separate the series such that

A = AL+ A2 (42)
where the ¢ superscript denotes a new series made up of the terms with m + n even and
the o, » series formed by terms with m + n odd. A similar separation is done for the

131




other source coefficients. The new coefficients bave the following property
Az > h) = AL(z < h)
and

Ad(s > h)=—Al(s < h) (43)

JU.-J[-.‘T']: mn¢+5[..7']: sin mé¢
JW.-S[i]: eolm¢+8[-6—']: sin m¢
¢ e
62, = 805 cos mé + bog, sin m¢ (44)

‘XI-&‘.”"‘¢+&‘-'§DM¢

o] oo fe] e

8Y, = 61f, cos m¢ + b1, sin m¢

and comparing our source potential relations with equations (30) and (37) in Harkrider
(1964), we obtain

7. ‘c P-A_. _
sl ma? |22 —a B
L € m L"
(. Yo [ S 1
sl a2 _aFe
uch Te d
'é !‘ . r— _.; <
§l—| =2 S 4 th -
L € LA. %
(. ) f o
§|=| =28t §;+a£
\ € L T |
3 i O
&.‘,-Spc’k’ L(‘,-l)f——&" E; (45)
. -
[J 22 E:' ¢
fog = 2pc’k ('1—1)7--&'1?.
b . J
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51 = 20e%3 | —7 AL — k(7 1) E,,;-'-

Fe |

6rf = 2032 | =y B, — k(7 - 1) -',:

4

[ . e 7 (8)e

\ € = 'p

(. e 1 (8)e
5| | =2k D=

L € Jm /]

btin = —i2k}pu COF
brle = —i2k3p DY)
where

22
-2
Cr

and where we have used the following relations between coeficients representing the down-
going and upgoing source radiation or the strength of the source potentials just below and

above the source

248 =At - AL -

2AL = At +AS
A more modern notation would be to use D for downgoing and U for upgoing instead of
the + and - notation of Harkrider (1964).

Following Harkrider (1964) we obtain as our integral solution for the vertical dis-
placement at the surface of our inhomogeneous half-space

<s,>= z‘: f(%) RyA)a + R;%[B]- + Ry 2, Jo(ke) &b (46)
0 [ ]

e«

where

F,=-R;, - [Tlnxz

\7]= [ S ]
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e = [ ~(As)s 8Un + (Arshs $Wa = (Ans)a 52n + (Arshs iXa |

(Bl = [ (Ars)a 6Ua — (Arshs $Wa + (Arsha 62a = (Ans)is 6Xa | )
and

Za = [ Ars)a 8V + (Arshis Wa = (Arsh 82 + (Ars) X |

(For symbols used without definition here, refer to Harkrider (1964), (1970) and Harkrider
and Flinn (1970).

The matrix Aps as defined in Harkrider (1064) is the layer product matrix which
gives the displacement-stress vector associated with P-SV motion at source depth in terms
of the surface displacement-stress vector. The integral solution given by equation (47) is
also valid for a vertically inhomogeneous half-space where Ay is the propagator matrix of
the P-SV displacement stress vector from the surface down to the source depth, b i.e,
Aps = Ag(h) and Ap = Ag(%._;). The only restriction on this form of the solution is
that at some depth the media is terminated by s homogeneous half-space commencing at

depth _,.

The surface azimuthal displacement due to SH waves is given by

- 2 1
<v.>-—§o o(a_)

NYO NB 4, (k)
F d(kr)

dk (48)

where
[} 3
Fpom—(Arly ~ (AL) simm

N = —i[ (o) = (Au)a mrm || (Asus 87 = (Ashas 6V | (49)

NP =1+ oty [ usha Yo = sk oV |

and
.
g = ¢z

The A;g is the propagator matrix for the displacement stress vector associated with SH
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motion down from the surface to the source depth, h. A; is the propagator matrix from
the surface down to the depth at which the terminating homogeneoushalf-space begins
with elastic properties denoted by subscript [ i.e., Az = A, (A) and A=A, (5-,).

Evaluating the residue contributions of equations (46) and (48), in order to obtain
the surface displacements due to Rayleigh and Love waves respectively, yields

Eh=ig e 3 {—6v. L i) - 6Wa 3T + 825 0) - -'6X..7."(»)}-
R ] R R
; - Bty v)
@ == 3 B 0O) 57 @) (50)

where

R;
8F,
ok

A =~

or equivalently in terms of energy integrals

1
= 2erUIT (51)
where
e [oiarre@in e
0
and
), =—i x é SY-TE(R) - 5V, f -~ A dH-(-z)(bL')
Y%l -‘EAJ..-O -Vl()- -E‘yﬁ()_dr—
where
1
A‘ -
OF,
(AL)n —“L
or
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- 52

where

I = fn('v';‘)’ é
0

and the correspondence between the Saito (1967) and Haskell (Harkrider,1964, 1970) nota-
tion for the eigenfunctions or the homogeneous ,i.e. no source, displacement-stress vector

° components evaluated at the residue eigenvalues is given by

Fi(h)= {%ﬂ ]” = (Aps) [%:L + (Als)l; + (Arshs [T.]

A0 =8 L = = (Anshi [TL + (Ars)a = (Ansha {T"]

TI(A) = by [-"—@-] -k {(Ans)u [—] +(Ansl;+(Aas)a[T']] (3)
w,/Cr ] Yo in

L

FE(h) = by [—’di)— -k {-(Ans)c‘n ;—'] + (Ans)a = (Arsks tT'l]
R

w, /Cp e Iy

Fih)= [l%)' ] = (ALs)

mh)-n[' . -k (Ask
0 H

and
£/c = ik
Using equations (45) the solutions can be written as

kp
(®)p = —dskgp Ap (Kp®p = baLpVp + —— Mpd; - —L Npn ) (54)

2y,
and
- PR Xl: =L
(%), ==2m A, { X ¥i(h) - w12 (A) } (55)
»
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where

x2-2 [0(’)'eum¢+D(‘)‘nnm¢)

V, = ¥,
y.a_ L b.’
Kt'Fs(h)- z(")
Ly =F() - ‘,, 7o (h) (58)

My = pci(r = 1) FI(R) = 3T ()
R
Ne = pea(y = 1) 73 (h) = 337 (4)
Ppr= f: [Z,‘. cos m¢ + B, sin mé )Hf’(kgr)
L L ]
Vi = 3 (B: oo mg + Ft sin mé JHP(ber) (s7)
[ T ]

dH? (&, r)

u-o

and the o superscripted variables defined similarly. The elastic parameters s and p which

sppear in all the previous equations, except inside of integrals, are for the media at source

depth h .
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SURFACE WAVES

In order to demonstrate the utility of this formulation once the multipole coeflicients
of the potentials have been determined, we first obtain surface wave expressions for a

second order moment tensor.

The cylindrical coefficients for & second order moment tensor are (Appendix C and
equations (57))

- {[ 0+ ) + 02 1D ﬁa]Hé”mr)

+ ;—;[(Hm - M) cos2¢ — 2M;, .in2¢]H£2)(er)J

&p =

4:;«.;’ kg v, lﬁu eos¢+ﬁasin¢]il,(2)(k,r)

— — @
e I [an °°8¢+Mzs'ln¢]”1 (krr) (58)

Vi =

pre [(M., + Mz — 2H) HY (k)

+ [(17 ~ M) cos 24 — 2M, -inu] HY (kg r)]

dH (ky r)

R ‘ k’

XL - 4”“’ -%'[25{1900'2‘*'(”2 M,,)nn%]
. i i3 Y% [ﬁ é — My, sin d”l(z)(kl-')

XL = v 23 €08 ¢ — M3 8D ~

Substituting these generalised cylindrical potential coeficients into equation (54), we have

(8.}, = —ily Ag {{_’_ (ﬁu‘*ﬁ’a*-ﬁa) Ky - (57114'5?2-217‘_»)

B‘]ng)(*n')
. _"'it_(ﬁ,,,.,.ﬁ Mysing ) HP (kpr)

+ 28 [(My-Hg)eon2s+ zﬁ.,-inu]na‘”(t.r)} (59)

where

138




Ag = —F'(h)

9
By = -{ [s -4 f—,]i:(n + 73,—;7:(»)]
and
Cs = —7 (»)
From equation (55), we obtain

dH{ (k, r)

Gh=-g4 { M = 1, sin 24| 25

- — Fz () (Mg cos ¢ — My sin ¢)

(2)
dfdfl ("L')} (60)

”
The far field forms of the above displacement fields are identical with Mendiguren (1975).

For a general quadrupole seismic source of arbitrary orientation (Appendix B and
equations (57))

Q; - A?—:’k—)- {(EI + 2!’,’) Ag Hy )(kn r)+ kf A, Hy )(kkf)}

-'(P)

¢. -y -—-(—)-b,v. Al Hl ("R')

Vi =i M) (2D

P ’ug " Al Hl(z)(bl')

v aud/
=i ”a{’ Bo HY (knv) + Ag "*")"‘"’} o

xz_.. ﬁm(w i 0A, msm(*&')
axp® 2 8¢ 4y

° . MY ,_“L’An d”lm("&')
X == “i; b b % 4

where we use the P and S wave moment definitions

NT(w) = i axp? i;;-
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M) = i axpa? -’%
s
,where 7{7 has been replaced by 79 | the pure shear field of arbitrary orientation (Har-
krider, 1977) , and
Ao = Y2 sin ) gin 26
A, = cos ) cos § cos ¢; — sin A cos 26 sin ¢,

A'- Vadn\.in”eoc%, +eoak-in63in2¢,

oA

0; = —gin )\ cos 25 cos ¢, — cos A cos 5 sin ¢,
A, . . .
B = 2 cos ) sin & cos 24, — sin ) sin 24 sin 2¢,

¢,y =90-4,

with ¢, the fault strike asimuth. These coefficients were defined in Harkrider (1876), Sato
(1972) and used in Langston and Helmberger (1875) as A3 , A3 , A, , Ay, and 24,
respectively.

Again substituting the coefficients into equations (54) and (55), we have

]
(®,)n =i kadp %’, [ [H"’ (k7 + 267 Ky — 8 M i’?— Ne |Ag HY (ke )

—r) & ‘
- [M(’) _} My + M° M (k) —2kf) Ln A HP (kg r)

+ 4 ["” -M* E%N, ]A, H® (kg v) } (62)
and
Gy = - 0 g, {rony S L), 2 gy, 20 BTt
For a double couple,
M) = M) = M(w)
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and we obtain
@)n = ~i ) by 4, {B#Ao H (b v) — gty B (kev) + Ag A, Hé”(k»r)} (84)

and

®@
Gy, =—i —L)'AL {-x,(” 8A, d:’: (*L')+T2r-;(” OA, d’; (ke r) }(65)
r r

In the far field these expressions reduce to the double couple expressions in Ben-Menahem
and Harkrider (1964) and correct the sign error in the Love wave coeficient G(A) in Har-
krider (1970).

For an explosion,

% - «: — 12 M(v) H (krv) (66)
and

g = 2
(@)n = —ike A 5 M(0) Kn H (ker) (67)

which can be obtained by either setting the diagonal components of the stress tensor equal
to M(w) in equations (58) and (59) or by direct substitution in equation (54).

For all cases, the radial displacement is obtained from the vertical by using
{(@)n =- — (0) a {©,}n (68)

For shallow sources, the source depth dependent terms reduce to
Ky = 73(0)
Ly=1
2
M‘ -—p ’C,(‘, - l)
3 -
Ny = pcp(7—1) 73 (0)
as A —+0. Using

pea(y = 1) = p (2kF—k3)/kE

141




we have for the shallow general quadrupole source

(©ohn — i knda 7;7{ [»7" ) (akp-2k]) - 3 M7 (26h-17) ]7: (0) Ao H3? (ka )

— @ki-1)) [17"’ -m" ]A, HO (ke r)
+ -;- [2 b M7 = MY (2ki-1)) ]7,"(0) Ag H® (ke v) } (69)

and

TP . A, dHY (kr)
T (70)

{%), — -1

For the shallow explosion

{€,}p = —tkg Ag 'EZ- M(w) 75 (0) H (kg v) (71)
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DISCUSSION

Vertical Rayleigh and tranverse Love waves were calculated for an exact supersonic
cavity shear release source model. Orientations of the prestress pure shear field correspond
to the three canonical or “fundamental” double couple faults: the vertical strike alip, the
wertical dip slip, and the 45° dip thrust faults. Rayleigh and Love waves for two earth
structures at a range of 2000 km. are shown in Figure 8. The source orientations with
respect to the receiver are specified by their fault equivalents; dip (§), rake (), and
asimuth (¢). The progation paths are for the Western US (WUS) and Central US (CUS)
velocity and attenuation models determined by Herrmann, Mitchell and colleagues at Saint
Louis University (Table 1). The synthetics included 8 WWSSN LP instrument. The failure
radius and source depth are both 0.8 km. This radius corresponds to P and S wave rise
times of 0.23 and 0.39 sec for the WUS models and 0.16 and 0.28 sec for the CUS model
respectively. For comparison we also show a cavity explosion with the same source depth,

cavity radius and seismic moment as the tectonic release model.

The most obvious features seen in the synthetics are the difference in period content
between the two crust-upper mantle models and the poor excitation of the prestress field
orientation associated with vertical dip slip mechanisms. The longer period Rayleigh and
Love waves seen in the WUS model are somewhat due to the longer source rise times but
are primarily caused by the greater attenuation of that model. Although the poor excita-
tion of Rayleigh and Love waves by a near surface vertical or borisontal dip slip point
dislocation, which are identified in the figure by (90 *,90° ,90°) and (90 *,90° ,0°)
respectively, and the A, or M;; moment tensor equivalent can be explained mathemati-
cally by their spectral amplitude being proportional to a stress eigen-function which
approaches sero as source depth is reduced, this is not a very intuitive explanation. It
would be instructive to be able to explain the observation in terms of the source vertical
radiation pattern and waves generated by the free surface. For example, a frequently used

rsy explanation for Love and teleseismic body waves is the destructive interference
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bewtween the free surface reflected waves from this shallow source and it's downgoing

Inorder to explore the possibility of a more intuitive explanation for this near surface
effect on Rayleigh waves and to better understand the effect of differing P and SV wave
time histories, we separated the Rayleigh wave into its contribution due to the P and SV
wave separately. The resulting synthetics for the three tectonic release source orientations
in the two structures are shown in Figure 7. Not only do the P and SV contributions
appear to be out of phase for all the mechanisms but the P wave contribution is larger for
all mechanisms except the vertical dip slip where it is essentially the same. The P contri-
bution for the strike alip orientation is even larger than that due to an explosion of equal
moment. This is particularly evident in the CUS structure. The enhancement of the P
wave generated Rayleigh waves for the strike alip over the explosion is probably due to the
vertical radiation pattern or amplitude variation over the source wave front. This effect
should be similar to that of the interaction of wave front curvature with the free surface

used to explain the excitation of the Rayleigh wave on a homogeneous halfspace.

As mentioned above, the Rayleigh wave generated by the P wave radiation from the
shallow vertical dip slip fault model is almost equal and opposite to the Rayleigh wave
«xcited by the SV source radiation. Their individual amplitudes are similar to the vertical
strike alip generated Rayleigh waves. In order to demonstrate this analytically, we separate
the expressions for the vertical Rayleigh wave displacement due to this mechanism into its
contribution from the P and SV source radiation. The P and SV potentials from equa-

tions (61) reduce to

)
P =i "f—:{%’l*ﬁ"-d“l H (kyr)

O =i M) (4 -2kD)

o i tndy HD (k)

Substiting the above individually into the vertical Rayleigh displacement and recalling My




and Ly from equations (56), we bave for the vertical displacement excited by the P source
potential

) k
AL -ﬁ%ﬂ b 4 [(k;-zm T+ 7,,’?77."0) ]-iu, HP (kyr)  (720)

and the vertical displacement excited by the SV source potential
==(3)
@7 =~ b 4 (434D [ FA) - ST ]-in ¢ H (hyr) (725)
i
M7 (W) = M¥(w) = M(w)

as in & point double couple, the sum of the P wave and SV wave excited Rayleigh waves

reduces to the usual expression
@y =i M o, 528y sing, B (bar)
which approaches sero as the source depth, A —+0 since §' (A )0 whereas
- o F’) W . @
@ = i L 4y 4, (43 -24f)sin gy B (har)
.

and

),
(%) — ~-°E,.ﬂ kp Ap (£} -2k sing; HP (kyr)

(4

and their sum approaches

) ),
@t — ¢TI 4, oy 12-24d)sin gy B (he)
’
which does not vanish at sero source depth.
This surprising result for tectonic release models should be considered only as an
amalytic artifact since any pure shear prestress field for this equivalent double couple orien-
tation, such as 7Y or 7§ where 3 is in the s direction, will be proportional to the depth
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below the free surface. Thus, although the displacement field for this tectonic release
mechanism is not sero at the free surface for a finite moment, it is impossible for the
moment to be uniform and not approsch sero at shallow source depths in a realistic pres-
tress model. In the case of the tectonic release models, the sepatated expressions are actu-
ally double couples with P and SV time histories, which differ primarily by their P to SV
velocity ratios in spectral amplitude and by their respective velocites in time scale (Figures
1-5). We wse this tectonic release model as one way to investigate the interaction of P and

SV generated Rayleigh waves.

The displacement expressions obtained individually for a P and a SV source, equa-
tions (72), are identical to those one would obtain by separating the dispacement equation
(69) into the terms which contain M"’ and those that contain M. By this means it is
possible to separate the P and SV source contributions for the other orientations of the

doublle couple as well as the tectonic release source directly from equation (69).

Similar conclusions can be reached for the case of a homogeneous halfspace using the
classical potential formulation where we include P wave source and SV wave source poten-
tials separately and satisfy the boundary conditions at infinity and the free surface for
each source. For the three fundamental faults defined by (6°,A°,¢°) and the explosion,

we have for the P and SV source generated vertical surface displacements.
Yertical Strike Slip : (90°,0° 45°)
=t £
S - M t"z—l! —iP, br
<> ——”,‘[ Y PR Jo{kr)dk
vl “‘:,,,,
S - — 707 ¢ s (ke )dk
<> = g TR

with
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Fa=—{(1=1047rary} . Pymbreh , Quirgh | (br,Fmkl—k?, and ym2k?8%/uP.
Vertical Dip Slip ; (90°,90°,90°)

<> = -"’f}ﬂ(.hc)(., -1) g () dk

<J.”)> - E") k’(&';‘)(" -1) %
o ) §

Jy(kr)dk
0

. 45° Dip Thruyst ; (45°,90° 45°)

<> = M fb(3k’-2k.’)(‘7 1) ) )i

<> =

=) & o3
M__ [ 310ty 0 ket
drpuP A Fy

Explosion ;
—u')
_1 P,
I")) - e e pa’ f J Jofbr)dk

Evaluating the residue for the homogeneous halfspace expressions given above, we
obtain

Yertical Strike Slip : (90°,0° ,45°)

(@ = S T2 F20) Ag H (har) W)
(B =i %’ M (4 -1) 71 (0) AR HE (kxr) e=1o1

Vertical Dio Slip : (90°,90°,90°)
(B = =i kg M7 (7-1) Ax HO (kpr) e~V

(@) =i kg M (7 ~1) Ag HO (kg r) =1
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45° Dip Thrust ; (45°,00° 45°)

EN =il M7 < , o (SkE-2k2) T (0) Ap HE (kpr) =V}

B = =i by W L a7 %(2&1—& 70) 4p HEP (kgr) =1
’

Explosion :

(%) =i by £ M §7(0) An HO (knr) V1

%™

where the halfspace Rayleigh response is (Harkrider,1970, Harkrider etel. ,1974, Hudson

and Douglas,1975)

2¢p—0a%—
4r = ”——'[(" -+ 1: [ c:v i’1)"%]

And the free surface elipticity is

jro=0=0. 27
9,

o 7-1)
12 1/2
. . Cr . cl .
with r, = ~ [l—?— and ry = — l-? . These expressions agree with

the Raleigh ‘uve‘ displacements, which one would obtain from the P and SV separated
equation (69).

As the source depth, b, approaches sero and thus P, and Q, approach sero, an
inspection of the above expressions show that the P and SV contributions to the Rayleigh
wave are of opposite sign for all the orientations and of equal amplitude for the vertical
dip alip. As stated earlier, this aleo can be seen for the more realistic earth models in Fig-
wre 7. Since the predicted reduction in Rayleigh wave amplitude as a function of source
depth for the vertical dip slip source orientation is caused by a delicate balance of P and S
wave source histories, the application of the double couple model to shallow earthquake

obeervations with its inherent assumption of equal P and S wave time histories should ve
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done with care.

Near the surface the stress eigenfunctions 77 , §{ and §5 are proportional to
source depth and thus vanish as the source approaches the free surface. All that remains is
the ¥, or vertical displacement eigenfunction which controls the source depth excitation of
Rayleigh waves from a vertical point force. In the excitation of Rayleigh waves, its role is
similar to F5 or ellipticity eigenfunction which governs the excitation of the horisontal
point force, the shallow vertical dipole and explosions. Thus as the vertical dip slip
oriented tectonic release source approaches the free surface, the non-vanishing part of the
Rayleigh amplitude wave can be considered as the sum of Rayleigh waves from two verti-
cal point forces of oppposite polarity; one with the P wave time history and the other with
the S wave history. Of course, unlike azimuthally independsent vertical point force Ray-

leigh waves, this Rayleigh wave has a sine dependence on asimuth.

The spectra for the non vanishing Rayleigh displacement field for the shallow tec-
tonic release sources with a vertical dip slip orientation have a spectral minimum or hole.
The spectral hole is due to the destructive interference of the P and S wave generated Ray-
leigh waves and depends on the differences in their time functions. Spectra for this
difference in time functions, |M Y ml is shown in Figure 8 for a P wave velovity of
6.2 km/sec, S wave velocity of 3.5 km/sec, and a density of 2.7 gm/cc for our two cavity
tectonic release models. The eavity radius is 0.8 km. The P wave and S wave moments are
both 10® dyne-cm. The low frequency ssymptote for the exact supersonic cavity release
mode is

B A L [”_Ro]'_l_
ftw 10 | a ) (1-20)

The high frequency asymptote for the same model is

M- M - .l M, [LIM [W(uo)‘%ﬂ(&ﬁo)

W'y wRy | (1-0)

The peak and ths overall shape of spectrum are controlled by the rise times or corner
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frequencies of the individual P and S wave histories. The shift to longer periods is propor-
tional to the failure radius and inversely proportional to the body velocities. Incressing
the radius also increases the peak value of this moment difference function even if we keep

the seismic moments constant.

Rayleigh waves were also calculatzd for the vertical dip slip orieztation of the exact
supersonic cavity release for source depths of 0.8, 0.4, 0.2 and 0. km depths for a variety
of cavity radii from 10. to 0.2 km for the WUS and CUS models. Reducing the source
depth while keeping the failure dimensions finite should be considered an analytic con-
struction used only to demonstrate the point vertical dip slip double couple orientations
dependence on the difference in source P and SV wave time histories as the source
approaches the free surface. This is paricularly true for this mechanism since, as discussed
earlier, the prestress field necessary for this type of mechanism also vanishes as one
approaches the free surface. Even when the source radius is not larger than the source
depth, the prestress will not be vertically uniform over the source dimensions. These were
compared with vertical dip slip point double couple S wave rise times of the tectonic
release model for all the source depths except the free surface. The synthetics included a

WWSSN LP instrument.

For the vertical strike slip and dip slip orientations of tectonic release, we measured
maximum peak to peak amplitudes for various release surface radii at sero source depth.
As the radius was reduced, the amplitudes for the dip slip orientation decreased monotoni-
call %or the strike-slip model the amplitudes increased t0 & maximum value and then
showed a alight decrease with smaller radii for both the CUS and WUS models. This
moderate maximum in the Rayleigh wave values was felt to be due to the presence of the
peak in the momement-rate spectra of the P and S waves. For rise times corresponding to
the release rise times, we also measured amplitudes for the vertical strike-slip double cou-
ple at sero source depth. Since the assumed double couple spectral history does not have a

peak, decreasing the rise time or increasing the corner frequency increased the amplitude of
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the Rayleigh wave for both crustal models to point at which it was the same as for a step
history. As one might expect, this monotonic increase in amplitude was also observed for
the dip slip double couple at the other three source depths.

As the release radius was reduced for the various depths, the larger Rayleigh wave
amplitudes approached that of the double eouple until some minimum rise time of the S
wave at which point the double couple and tectonic release were identical for smaller rise
times. This occuured at a S wave rise time of about 0.5 second for the CUS model at a
source depth of 0.2 km. As expected, reducing the double eouple source depths by a factor
of 2 reduced the Rayleigh wave amplitude factors similarly for the vertical dip slip model.

In addition, as the radius was decreased in the CUS model, there was & minimum
amplitude at intermediate radii, which gave values less than the double couple at
corresponding rise times. This was present at all depths below the surface. For the WUS
model, the tectonic release values were larger for all radii and rise times. This minimum in
amplitude was associated with a spectral hole present only in the tectonic release models

,which was expected because of the difference in P and SV source time functions.

A more complete study of these effects would require many different source and pro-
pagation elastic structures and is beyond the scope of this paper. Although a convenient
way to approximate the effect of differening shot point velocities and source dimensions is
to run a suite of double couple time history calculations for the P and SV sources
separately and then sum the different combinations. This would also allow one to
efficiently check the range of source dimensions and shot point conditions for which the

double couple is a valid appproximation to tectonic release.
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Appendix A
In this Appendix, we drop the double bar superscript notation in equations (37)

through (39a) and rewrite as

8o OW, 01’1
8 + 9r 8y

[ -}
v where < w > = fwik
0

and

U--%+E’¢

1 (6w, oV,
T

a:"a,

In terms of cylindrical coordinate derivatives

av, sin ¢ av, . v, cosd av,
""p'[“"‘or'f 7y u]

where the cartesian potential integrands are
¥ =i} [0V cosmé+ D ainmy |0 F,
L)

v - .z)o [Ef’eam¢+5.‘.”.in mé ]J. F,
or

- ‘2‘: { [512)“¢eum¢+5f)“¢,inm¢_ Gl sin ¢ cos m¢ — D sin ¢ sin m¢ ]%‘;—+
L L
[af)'in"i"""b_-(-”'i"‘”"“*E-g)”ilin ﬂ#—ﬁ.{"mdmm‘]m% ]Fl

and

%)‘ = 1/2 (Juas = Jus1)

m"',"s' = 1/2 (Juu + Jun)
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then

2= .-{ $ [6.‘.” cos(m—1)é + D sin(m ~1)¢ + O sin(m—1)¢ — DS cos{m —1)¢ ]
-» =l

Ju-s+ | -0 cosim+1)¢ — DL sinm 414 + G2 sinfm +1)6 — D2 cos(m+1)6 ]J.ﬂ]r,

Collecting and identifying with

We have the following recurrance relation

2"5 = (Ca (2) --l

¢-iz::o(§.mm¢+f.linm¢)l. F,

- (D-(-l?n + Dm

2k Fp = (C(-lﬂ + C-(-,,-x) + (Dﬂ-x - 1)

whm-ég)mdl-)g)’nmleroform>nmdm<0md

a‘o') - BEI)
and

F,

As an example when n==8, we have

2k E, = ¢ - D"

2k E, = G — D" - 2T

2k B, TP - B -~ BV
2% E, = 3‘(9) - 5(1) c’(ﬁ) (l)
2% E,-C BV -p
#E- -T-B

2% Ey- —3';"’—'15.("
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and G = —DY

=0

2% F, =0

2k F, = G" 4+ B 4 201

2k Fom &+ B 4+ T - DY
2% F. 0(1) + B(’) + d‘) (3)
b Fom B4 B+ T B0
ok Fym +'5§"-T>.‘”

st Fom +G-D




.

Appendix B

Cartesian and ecylindrical multiple coefficlients for quadruple sources of arbi-

trary orientation.

Comparing Harkrider (1976) equations (AS) with this paper’s equations (33), we

obtain the Cartesian coeflicients:

Ag = —K, k2 sin ) sin 25

An=3 K k2 cos) coss
Az = -3 K, K sin) sin25
CL) = 3 K, b} sink cos26
ol ---;7 K, k2 sin ) sin 26
DY - :—21{,&,’ cos ) cos §
Cff = 4 K, b} sin) sin2
Cf = —2 Ky b} sin) cos25

1 .
Cf) = -5 K, b} coe)sin s

3,.--%1(.&.’ sin \ cos 26
By = —3 Ko K cos) sins
ol = -;-K, L? cos ) sin §
Cf = & K, b7 sin ) cos 26
Cf) = 3 Ky b} cou) a5
D) = —2 K, b} eos)sin
DY = = K, I} sin) cos 26
DY = —1 K, b} cos) cos§

(3) 1 g . .
Day T{K‘k’ sin ) sin 26

The resultant cylindrical coefficients using Appendix A are

-
o-

-

2k,

Al -—i,-l(,bu,eosx cos &

Y=L K Pain)sin2

Lo K, (5 + 2%) sin X sin 26

¢

,--;‘:K.Pmuns

B -%-K,ku.ninx c0s 26
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E;-—,-K,v,mﬂnnz& (B2)

3k,
= = 1 .
E =2y P K, v, sin \ sin 25 F;-?K,V,MXMJ
=1, (k)2 =1 (-2
El -?-K,—’&—eu)wu& F; --FK,—};lin)\eoszs
4 ’
5;(')’--—7K,bv,nnx cos 26 D(')'--—HK,bv’eosXeocJ
/) &
s =(8)e 1 2 . S0 2
Cs' = —=x Ky k* cos ) sin § D, = K, ¥ sin ) sin 25

2&,
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Appendix C

The definition of the second order seismic moment tensor is
‘-——
.0'(‘ ') ” ae G

%(2,8) = —=M,, *G, ,

%(zw) = =M G,,
where the comma denotes differentiation with respect to the observer coodinates, z, rather
than the source coordinates, §.
Now

- 1 o (]
Gy = v {0:,8: Bz, (A-4d) + kp bip O_A’ }

Now from Harkrider (1976), equations(32) and (33), we have that

Y 1 0w
i i
apnd
T 1 o,
V- i} ds;
O
$-.L M, G
-,;r oo
md

Coni = ltpu' {0:,0:, 0z (ArAd + 1'%y 55~ 08'0 }
snd sinee

» » »
Pei WA and by ot Ay e M

we have
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From Erd@yi (1937)
Ak, R)PY (ccst)e? = i~ (D,)™ P[*X0/0i,:) HY(kR)

where the differential operator D, is defined as

1 8 . 8
D= &—' 0_31 + '372
Combining equation (C1) with
H3(ksR) P3 (cost) = ,,'; [;’,— i“'; +A.]
and
A, = —i k KY(kvR)
We have
PO )
T~ {mhk)-sﬂz(www)}

» ) '
i {mmn iR | P oot - 5 P (cot) a2 |

o, ’ [

” -e—{n,’(hn)...r,’(m) P.‘(ml)+%?}(ml)eo-u
» b
T:;{ = =i 5 keR)P} (coo) sin2s
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’3 [
Tﬁ%--.‘%l&’(mm(w)m
]
%- -e-‘;L K3(kvR )P§ (coed) sing

Comparing with the definition of the cartesian multipole coeficients we have

& - -
Am--—l— Ay (M), + M2 + My,)

axpu?
and
Apm L i K (T M- i) c2)
axp® 8 ! B
L 1 Lk =
Ag + > s 3 2M By = +"pw’ lT 2M 3y
1 Wk = = L
Az +“‘W, ¢ 5 (M1 = My) By = +"pwg =5 M
Now
% - -
. mm— IR G
it 32 n Cia o
and

Cio 41 4xpu? {8:,83, 02,03, (A’—A")+ ks’ S Oz, 2; A’}

Operating with ¢, , the first term is sero since it is symmetric in (j k) and

-~ - 1 2 0’
Ca G‘P-d {l’pbl’ ‘l €y 08'083 Al

thus
7 1 = &
V- T Mo ds,0s3; 4
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881083
— - - 02 02
W'-_dtpu’ {( == My) 82,0 Bloz 2 0:,’]

Comparing as before we have

1 ..
Colt) = — o kd M
S b e v
c,,m-_s‘”, i 2 M, Dyl m = == § 2 (M — M)
: [ - b _
(1, o = 1 s L2 - 1 1
Cu s | o M= Dyl = 4 orp? "‘LMu
C'Q)--.- 8’:”’ Ob‘ ﬁu
1 Lk ) N -
0"”""'3”«? i L (M - My) Dufft = 4+ o i My, (Cs)
-1 ke N S
Ou = = g 1o M Dal == e {6 Mm
C =0
S B ' o1 i -
Cg® +m~ ) 3 ﬁn Dllm W .-QL n
®) 1 b 1 1
c. -+m— [] 3 18 D.m-—T s 6 (M"-M.)
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The resulting eylindrical coefficients using Appendix A are

I,-+T$-u,— -%- [t‘(ﬂ,,+a7g)+2ﬁ..(h.’-t’)]

- 1 —_ =
Al-+m "l%u;‘ B‘-+‘t:(d.

Xg-+“# ;"k’(ﬁg—ﬁu) Eg-—z:?- l.b.ﬁu

6"’ =0
O -t ki, M PP ey 2L ki, M

"’“P p Mo +"’w3 p 13
P =t 4-;«.»’ M, DfY) = - ;f;‘? B (M), - M) (C4)
and
Eo-— SI:U’ ¢§’(A-l“+ﬁz—2ﬁg)
- i (P -E) o = i (@F-k) —
El--"’“” & Ml’ F‘-—‘f’U’ k M”
= 1 e = = 1 = T
E =+ Py ey (M), — M) Fagm + P € My,
where

(-m(l-—‘)

Thus coefficients involving ¢ are odd and the other coefficients are even in the sense of

equations{43).
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TABLE 1

Western United Stutes Model (WUS)
Thickness a p [ ) Q.o Qs
(km)  (km/oc) (kmfsec) (gm/em )
20 3.55 2.08 2.20 170. 85.
3.0 6.15 3.27 2.70 300. 150.
18.0 6.15 3.57 279 $00. 150.
8.0 8.70 3.03 2.97 1000. 500.
8.0 ¢.70 3.73 2.97 1000. $500.
0.0 7.80 4.41 3.35 2000. 1000.
: Central United States Model (CUS)
Thickness a [ ’ Q @
(km)  (km/sec) _(kmfsec) (gm/em ?)
1.0 5.00 2.89 25 600. 300.
9.0 6.10 3.52 2.7 600. 300.
10.0 6.40 3.70 29 600. 300.
20.0 8.70 3.87 3.0 4000. 2000.
0.0 8.15 4.70 34 4000. 2000.
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Figure 1.

DISPLACEMENT

RADIAL TANGENTIAL
(@) (@)
SN (o)

(c) ()]

Far-field radial (P) and tangential (S) displacement time histories
for the exact tectonic cavity release (Fig. la and 1d), for the
Randall~Archambeau approximate cavity release (Fig. 1b and le), and
for the 'w~square’ double couple model (Fig. lc and 1f).
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Figure 2. Far-field radial (P) and tangential (S) velocity time histories irur che
exact tectonic cavity release (Fig. 2a and 2d), for the Randall-Archambean
approximate cavity releasge (Fig. 2b and 2e), and for the 'Q) ~square' double
couple model (Fig. 2c and 2f).
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DISPLACEMENT
RADIAL TANGENTIAL

AL
LA

Figure 3. Far-field radial (P) and tangential (S) displacement time histories for the
exact tectonic cavity release (solid line) supcrimposed on the Randall-Archambeau
approximate cavity release (dashed line)(Fig. 3a and 3d), for the exact
tectonic cavity release (solid line) superimposed on the W-square' double
couple model (dashed line)(Fig. 3b and 3e), and for the Randall-Archambeau
approximate cavity release (solid line) superimposed on the ¥/ -square' double
couple model (dashed line)(Fig. 3c and 3f).
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Figure 4. Par-field radial (P) displacement and vel

Step pressure on a cavity explosion (Fig. 4a and 4d), for the exact

tectonic cavity release (Pig. 4b and 4e), and the two sources time
histories superimposed (Fig. 4c and 4f).

ocity time histories for the
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Figure 5. Far-field source displacement spectra.
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Figure 6.

Vertical Rayleigh and horizontal Love waves at a range of 2000 km
as observed on a WWSSN LP seismograph.
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Figure 7.

Vertical Rayleigh waves at a range of 2000 km as observed on a
WWSSN LP seismograph. The contributions to the Rayleigh wave
by the P and SV source radiation are shown separately.
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Figure 8. Spectral difference between P and S wave moments for the exact supersonic
cavity release and the approximate Randall-Archambeau equivalent. The
arrows mark the P and S corner frequencies.
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